K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

\(\left(a+b\right).\left(b+c\right).\left(c-a\right)+\left(b+c\right).\left(c+a\right).\left(a-b\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=\left(a+b\right).\left[\left(b+c\right).\left(c-a\right)+\left(c+a\right).\left(a-b\right)\right]+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=\left(a+b\right).\left(ac-a^2+bc-ab+a^2-ab+ac-bc\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=-\left(a+b\right).2a.\left(b-c\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=\left(a+b\right).\left(b-c\right).\left(-2a+c+a\right)=\left(a+b\right).\left(b-c\right).\left(c-a\right)\)

23 tháng 6 2019

giai lai:

\(\left(b+c\right).\left[\left(a+b\right).\left(c-a\right)+\left(c+a\right).\left(a-b\right)\right]+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=-\left(b+c\right).2a.\left(b-c\right)+\left(b-c\right).\left(ac+bc+a^2+ab\right)\)

\(=\left(b-c\right).\left(-2ab-2ac+ac+bc+a^2+ab\right)\)

\(=\left(b-c\right).\left(-ab-ac+bc+a^2\right)\)

\(=\left(b-c\right).\left(a+b\right).\left(a-c\right)\)

29 tháng 10 2019

Ta có : ( a - b )2  + 4ab

= a2 - 2ab + b+ 4ab

= a+ 2ab + b2

= ( a + b )( Vế trái )

Do đó : ( a + b )= ( a - b )2 + 4ab 

29 tháng 10 2019

+) Biến đổi vế phải ta có :

\(\left(A-B\right)^2+4AB\)

\(=A^2-2AB+B^2+4AB\)

\(=A^2+2AB+B^2=\left(A+B\right)^2=VT\left(đpcm\right)\)

\(\dfrac{3x^2+ax^2+x+a}{x+1}\)

\(=\dfrac{3x^2+3x+ax^2+ax-\left(a+2\right)x-\left(a+2\right)+a+2}{x+1}\)

\(=3x+ax-a-2+\dfrac{a+2}{x+1}\)

Để đây là phép chia hết thì a+2=0

hay a=-2

Bài 2:

Diện tích khu vườn là:

\(\left(14+x\right)\left(18-x\right)\)

\(=252-14x+18x-x^2\)

\(=-x^2+4x+252\)

\(=-\left(x^2-4x+4-256\right)\)

\(=-\left(x-2\right)^2+256\le256\forall x\)

Dấu '=' xảy ra khi x=2

Chu vi hình chữ nhật là:

\(C=2\left[14+x+18-x\right]=2\cdot32=64\left(cm\right)\)

5 tháng 9 2019

Bài 1:

\(a+b=15\)

\(\Rightarrow\left(a+b\right)^2=225\)

\(\Leftrightarrow a^2+2ab+b^2=225\)

\(\Leftrightarrow a^2+4+b^2=225\)

\(\Leftrightarrow a^2+b^2=221\)

Ta có: \(\left(a-b\right)^2=a^2-2ab+b^2\)

                               \(=221-4\)

                                \(217\)

Bài 2:

Vì \(x:7\)dư 6

\(\Rightarrow x\equiv-1\left(mod7\right)\)

\(\Rightarrow x^2\equiv1\left(mod7\right)\)

Vậy \(x^2:7\)dư 1

a: =>(3x+1)(3x-1)-(3x+1)(2x-3)=0

=>(3x+1)(3x-1-2x+3)=0

=>(3x+1)(x+2)=0

=>x=-1/3 hoặc x=-2

b: =>(3x+1)(6x+2)-(3x+1)(x-2)=0

=>(3x+1)(6x+2-x+2)=0

=>(3x+1)(5x+4)=0

=>x=-1/3 hoặc x=-4/5