Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(P=x_1x_2-\left(x_1^2+x_2^2\right)=3x_1x_2-\left(x_1+x_2\right)^2\)
\(P=3\left(m-2\right)-m^2=-m^2+3m-6=-\left(m-\dfrac{3}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}\)
\(P_{max}=-\dfrac{15}{4}\) khi \(m=\dfrac{3}{2}\)
\(P_{min}\) ko tồn tại
Bạn ghi sai đề?
\(Δ=(-m)^2-4.1.(m-2)\\=m^2-4m+8\\=m^2-4m+4+4\\=(m-2)^2+4\)
\(\to\) Pt luôn có 2 nghiệm phân biệt
Theo Viét
\(\begin{cases}x_1+x_2=m\\x_1x_2=m-2\end{cases}\)
\(x_1x_2-x_1^2-x_2^2\\=3x_1x_2-(x_1^2+2x_1x_2+x_2^2)\\=3x_1x_2-(x_1+x_2)^2\\=3(m-2)-m^2\\=-m^2+3m-6\\=-\bigg(m^2-2.\dfrac{3}{2}.m+\dfrac{9}{4}+\dfrac{15}{4}\bigg)\\=-\bigg(m-\dfrac{3}{2}\bigg)^2-\dfrac{15}{4}\le -\dfrac{15}{4}\\\to \max P=-\dfrac{15}{4}\leftrightarrow m-\dfrac{3}{2}=0\\\leftrightarrow m=\dfrac{3}{2}\)
Vậy \(\max P=-\dfrac{15}{4}\)
Bài 2:
a: \(x^2-4x+3=0\)
=>x=1 hoặc x=3
\(x_1^2+x_2^2=1^2+3^2=10\)
b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)
c: \(x_1^3+x_2^3=1^3+3^3=28\)
d: \(x_1-x_2=1-3=-2\)
a: Khi m=-3 thì (1) trở thành \(x^2-2\cdot\left(-2\right)x-\left(-3\right)-3=0\)
=>x2+4x=0
=>x(x+4)=0
=>x=0 hoặc x=-4
b: \(\text{Δ}=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12\)
\(=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Ta có: \(x_1^2+x_2^2=10\)
nên \(\left(x_1+x_2\right)^2-2x_1x_2=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)=0\)
\(\Leftrightarrow4m^2-8m+4+2m+6=0\)
\(\Leftrightarrow4m^2-6m+10=0\)
\(\text{Δ}_1=\left(-6\right)^2-4\cdot4\cdot10=36-160< 0\)
Do đó: Phương trình vô nghiệm
Bài 1:
a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\
\Leftrightarrow x^2+1+7=0\\
\Leftrightarrow x^2+8=0\left(vô.lí\right)\)
Thay m=3 vào (1) ta có:
\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)
b, Thay x=4 vào (1) ta có:
\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)
c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)
\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)
\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)
Bài 2:
a,Thay m=-2 vào (1) ta có:
\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)
\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)
\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)
\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)
Ta có:
\(\Delta=\left(m+2\right)^2-4\left(m-1\right)=m^2+4m+4-4m+4=m^2+8>0\left(\forall m\right)\)
=> PT luôn có 2 nghiệm phân biệt với mọi GT của m
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m-1\end{cases}}\)
Thay vào A ta được:
\(A=x_1^2+x_2^2-3x_1x_2\)
\(A=\left(x_1+x_2\right)^2-5x_1x_2\)
\(A=\left(-m-2\right)^2-5\left(m-1\right)\)
\(A=m^2+4m+4-5m+5=m^2-m+9\)
\(A=\left(m^2-m+\frac{1}{4}\right)+\frac{35}{4}\)
\(A=\left(m-\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\left(\forall m\right)\)
Dấu "=" xảy ra khi: \(m=\frac{1}{2}\)
Vậy \(Min_A=\frac{35}{4}\Leftrightarrow m=\frac{1}{2}\)
Δ = b2 - 4ac = ( m + 2 )2 - 4( m - 1 ) = m2 + 4m + 4 - 4m + 4 = m2 + 8 ≥ 8 > 0 ∀ m
hay phương trình luôn có hai nghiệm phân biệt với mọi m
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
Khi đó : A = x12 + x22 - 3x1x2 = ( x1 + x2 )2 - 5x1x2
= ( -m - 2 )2 - 5( m - 1 ) = m2 + 4m + 4 - 5m + 5
= m2 - m + 9 = ( m - 1/2 )2 + 35/4 ≥ 35/4 ∀ m
Dấu "=" xảy ra <=> m = 1/2. Vậy MinA = 35/4
a. Phương trình có nghiệm \(x=-1\) nên:
\(\left(-1\right)^2-2\left(m-1\right).\left(-1\right)+m-5=0\)
\(\Leftrightarrow1+2m-2+m-5=0\)
\(\Leftrightarrow m=2\)
Khi đó: \(x_2=-\dfrac{c}{a}=-\dfrac{m-5}{1}=-\dfrac{2-5}{1}=3\)
b.
\(\Delta'=\left(m-1\right)^2-\left(m-5\right)=m^2-3m+6=\left(m-\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm phân biệt với mọi m
c.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(A=4\left(m-1\right)^2-2\left(m-5\right)\)
\(A=4m^2-10m+14=4\left(m-\dfrac{5}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)
\(A_{min}=\dfrac{31}{4}\) khi \(m-\dfrac{5}{4}=0\Rightarrow m=\dfrac{5}{4}\)
Đen-ta phẩy = -(m-1)2 - (m2 - m - 1) = m2 - 2m + 1 - m2 + m + 1= 2-m
Để pt có 2 nghiệm pb thì đen-ta phẩy \(\ge\) 0 \(\Leftrightarrow\) 2 - m \(\ge\) 0
\(\Leftrightarrow\) m \(\le\) 2
Theo ht Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x._1x_2=m^2-m-1\end{cases}}\)
Đề cho: P=x12+x22-x1x2+x1+x2 = (x1+x2)2-3x1x2+x1+x2= 4(m2-2m+1)-3(m2-m-1)+2m-2
= 4m2-8m+4-3m2+3m+3+2m-2= m2-3m+5= m2-2m.\(\frac{3}{2}\)+ \((\frac{3}{2})^2\)-\((\frac{3}{2})^2\) +5
= (m-3/2)2 + 29/4 \(\ge\)29/4. Vậy GTNN của P là 29/4
Dấu "=" xảy ra \(\Leftrightarrow\)m-3/2=0 \(\Leftrightarrow\)m=3/2(TMĐK m \(\le2\))
Vậy m = 3/2 thì biểu thức P đạt GTNN là 29/4
MÌNH GIẢI SAI CHỔ NÀO BẠN THÔNG CẢM NHA! ^.^ !!