Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thử vào link này xem đi
http://pitago.vn/question/cho-tam-giac-abc-uong-trung-tuyen-ad-duong-cao-bh-duong-15.html
- Giải PT \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)
\(\sqrt[3]{\left(x+1\right)^2+\sqrt[3]{\left(x-1\right)^2}+\sqrt[]{x^2}-1=1}\)
4/Gọi hai trung tuyến kẻ từ B, C là BM và CN, chúng cắt nhau tại O
Bây giờ ta sẽ chứng minh rằng : Nếu hai trung tuyến đó vuông góc thì b^2 + c^2 = 5a^2 , từ đó suy ra điều ngược lại (vì mệnh đề này đúng với thuận và đảo)
Gỉa sử BM vuông góc với CN tại O
Ta đặt OM = x => OB = 2x và => OC =2y
AB^2/4 + AC^2/4= NB^2 + MC^2 = ON^2 + OB^2 + OM^2 + OC^2 = 5(x^2 + y^2)
=> AB^2 + AC^2 = 20(x^2 + y^2)
Mà BC^2 = OC^2 + OB^2 = 4(x^2 + y^2)
Suy ra : AB^2 + AC^2 = 5.4(x^2 + y^2) = 5BC^2 hay b^2 + c^2 = 5a^2
ta có điều ngược lại là nếu b^2 + c^2 = 5a^2 thì hai trung tuyến vuông góc(cái này tự làm ngược nha bn)
5
Vẽ tam giác ABC cân tại A có góc A bằng 36 độ. Và BC=1.Khi đó góc B = góc C = 72 độ.
Vẽ BD phân giác góc B , DH vuông góc AB. Đặt AH=BH=x, ta có AB=AC=2x và DC=2x-1
Cm được tam giác ABD và BCD cân => AD=BD=BC=1
cos A = cos 36 = AH/AD=x/1=x
Vì BD là đường phân giác nên AD/DC=AB/AC => \(\frac{1}{2x-1}=\frac{2x}{1}\)
=> \(4x^2-2x-1=0\Leftrightarrow\left(2x-\frac{1}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\)
\(\Leftrightarrow\left(2x-\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(2x-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{4}\left(N\right)\\x=\frac{1-\sqrt{5}}{4}< 0\left(L\right)\end{cases}}\)
Vậy cos 36o = (1 + √5)/4
trong tam giac vuong ABH Cco \(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\)
AHC co \(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\left(2\right)\)
tu (1) va(2 ) suy ra \(AB^2-BH^2=AC^2-HC^2\Rightarrow AB^2+HC^2=AC^2+BH^2\)
Để chứng minh rằng √2/AD = 1/AB + 1/AC, ta có thể sử dụng định lý phân giác trong tam giác vuông.
Vì tam giác ABC vuông tại A, nên ta có đường phân giác AD chia góc BAC thành hai góc bằng nhau.
Áp dụng định lý phân giác, ta có:
AB/BD = AC/CD
Từ đó, ta có:
AB/AD + AC/AD = AB/BD + AC/CD
= (AB + AC)/(BD + CD)
= (AB + AC)/BC
= 1/BC (vì tam giác ABC vuông tại A)
Vậy, ta có:
1/AD = 1/AB + 1/AC
√2/AD = √2/AB + √2/AC
Vậy, chứng minh đã được hoàn thành.
Để chứng minh rằng nếu 1/ah^2 + 1/am^2 = 2/ad^2, ta cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
2/AD^2=(căn 2/AD)^2
=(1/AB+1/AC)^2
\(=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}+2\cdot\dfrac{1}{AB\cdot AC}\)
\(=\dfrac{1}{AH^2}+2\cdot\dfrac{1}{AH\cdot BC}\)
\(=\dfrac{1}{AH^2}+\dfrac{1}{AM^2}\)