K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
30 tháng 9 2016
- Giải PT \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)
13 tháng 6 2019
\(\sqrt[3]{\left(x+1\right)^2+\sqrt[3]{\left(x-1\right)^2}+\sqrt[]{x^2}-1=1}\)
8 tháng 8 2020
Áp dụng định lý Ceva cho tam giác ABC ta có:
\(\frac{AE}{BE}.\frac{BD}{CD}.\frac{CH}{AH}=1\)
Mà BD = CD nên \(\frac{AE}{BE}=\frac{AH}{CH}\).
Theo tính chất đường phân giác của tam giác ta có:
\(\frac{AE}{BE}=\frac{CA}{CB}\).
Do đó: \(\frac{AH}{CH}=\frac{CA}{CB}\)
\(\Leftrightarrow\frac{AH}{CH}+1=\frac{CA}{CB}+1\)
\(\Leftrightarrow\frac{AC}{CH}=\frac{CA+CB}{BC}\).
Mặt khác ta tính được: \(CH=\frac{CB^2+CA^2-AB^2}{2CA}\).
Do đó: \(\frac{2CA^2}{BC^2+CA^2-AB^2}=\frac{CA+CB}{BC}\).
Theo tỉ lệ thức ta có đpcm.
thử vào link này xem đi
http://pitago.vn/question/cho-tam-giac-abc-uong-trung-tuyen-ad-duong-cao-bh-duong-15.html