Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: BC⊥BA tại B
nên BC là tiếp tuyến của (A;AB)
b: Xét (A) có
CB là tiếp tuyến
CD là tiếp tuyến
Do đó: CB=CD
hay C nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AC là đường trung trực của BD
hay AC\(\perp\)BD
Giúp mình luôn câu c d được không:((( sắp hết h rồi mà không bt làm
`(4\sqrt{6}+x)^2=8^2+(6+\sqrt{x^2+4})^2`
`<=>96+8\sqrt{6}x+x^2=64+36+12\sqrt{x^2+4}+x^2+4`
`<=>2\sqrt{6}x-2=3\sqrt{x^2+4}` `ĐK: x >= \sqrt{6}/6`
`<=>24x^2-8\sqrt{6}x+4=9x^2+36`
`<=>15x^2-8\sqrt{6}x-32=0`
`<=>x^2-[8\sqrt{6}]/15x-32/15=0`
`<=>(x-[4\sqrt{6}]/15)^2-64/25=0`
`<=>|x-[4\sqrt{6}]/15|=8/5`
`<=>[(x=[24+4\sqrt{6}]/15 (t//m)),(x=[-24+4\sqrt{6}]/15(ko t//m)):}`
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x-3=2\cdot1-3=-1\end{matrix}\right.\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}8x-2\left|y+2\right|=6\\x+2\left|y+2\right|=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=9\\x+2\left|y+2\right|=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y+2\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y\in\left\{-1;-3\right\}\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-3}=2\\\dfrac{1}{2\left|y\right|-3}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=2\\2\left|y\right|=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y\in\left\{2;-2\right\}\end{matrix}\right.\)
b: Thay x=-1 và y=-3 vào (d1), ta được:
-3=-1+2
=>-3=1(loại)
=>A ko thuộc (d1)
Thay x=-1 và y=1 vào (d1), ta đc:
-1+2=1
=>1=1
=>B thuộc (d1)
c: Tọa độ C là:
x+2=-1/2x+2 và y=x+2
=>x=0 và y=2
\(\hept{\begin{cases}\frac{y}{2}-\frac{\left(x+y\right)}{5}=0,1\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0.1\end{cases}}\)
\(\hept{\begin{cases}\frac{\left(x+y\right)}{5}=\frac{y-0,2}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
\(\hept{\begin{cases}x+y=\frac{5y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
\(\hept{\begin{cases}x=\frac{5y-1}{2}-\frac{2y}{2}=\frac{3y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
Ta thay x vào biểu thức \(\frac{y}{5}-\frac{\left(x-y\right)}{2}\)ta đc
\(\frac{y}{5}-\frac{\left(\frac{3y-1}{2}-y\right)}{2}=0,1\)
\(\frac{3y-1-2y}{2}=\frac{y}{5}-\frac{0,5}{5}\)
\(\frac{y-1}{2}=\frac{y-0,5}{5}\)
\(5y-5=2y-1\Leftrightarrow5y-5-2y+1=0\Leftrightarrow3y-4=0\Leftrightarrow y=\frac{4}{3}\)
Thay y vào biểu thức \(\frac{3y-1}{2}\)ta đc
\(x=\frac{3.\frac{4}{3}-1}{2}=\frac{3}{2}\)
Vậy \(\left\{x;y\right\}=\left\{\frac{3}{2};\frac{4}{3}\right\}\)
b: Thay x=-1 và y=-3 vào y=x+2, ta đc:
-1+2=-3
=>1=-3(loại)
=>A ko thuộc (d1)
Thay x=-1 và y=1 vào y=x+2, ta đc:
-1+2=1
=>1=1(đúng)
=>B thuộc (d1)
c: Tọa độ C là:
x+2=-1/2x+2 và y=x+2
=>x=0 và y=2