Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
1: Ta có: \(A=3\sqrt{25}-\sqrt{36}-\sqrt{64}\)
\(=3\cdot5-6-8\)
\(=15-6-8=1\)
Câu I:
2: Ta có: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{x+1}{x-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-1}{x-1}=1\)
Bài 3:
\(a,=\dfrac{53\left(9+2\sqrt{7}\right)}{53}+2\sqrt{7}-5=9+2\sqrt{7}+2\sqrt{7}-5=4+4\sqrt{7}\)
a: Sửa đề: \(\dfrac{53}{9-2\sqrt{7}}+2\sqrt{7}-5\)
\(=9+2\sqrt{7}+2\sqrt{7}-5\)
\(=4\sqrt{7}+4\)
Bài 1:
a: \(-xy\sqrt{\dfrac{y}{x}}=-xy\cdot\dfrac{\sqrt{xy}}{x}=-y\sqrt{xy}\)
b: \(\sqrt{\dfrac{-3x^2}{35}}=\dfrac{\sqrt{105}x}{35}\)
bài 3:
b: \(\dfrac{2}{\sqrt{3}+1}+\dfrac{1}{2-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}\)
\(=\sqrt{3}-1+2+\sqrt{3}+\sqrt{3}-1\)
\(=3\sqrt{3}\)
\(b,B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\left(x\ge0;x\ne4;x\ne9\right)\\ B=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)
\(c,B< A\Leftrightarrow\dfrac{\sqrt{x}-4}{\sqrt{x}-2}< \dfrac{\sqrt{x}+1}{\sqrt{x}-2}\Leftrightarrow\dfrac{\sqrt{x}-4}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}< 0\\ \Leftrightarrow\dfrac{-5}{\sqrt{x}-2}< 0\Leftrightarrow\sqrt{x}-2>0\left(-5< 0\right)\\ \Leftrightarrow x>4\\ d,P=\dfrac{B}{A}=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}:\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=\dfrac{\sqrt{x}-4}{\sqrt{x}+1}=1-\dfrac{5}{\sqrt{x}+1}\in Z\\ \Leftrightarrow5⋮\sqrt{x}+1\Leftrightarrow\sqrt{x}+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{-6;-2;0;4\right\}\\ \Leftrightarrow x\in\left\{0;16\right\}\left(\sqrt{x}\ge0\right)\)
\(e,P=1-\dfrac{5}{\sqrt{x}+1}\)
Ta có \(\sqrt{x}+1\ge1,\forall x\Leftrightarrow\dfrac{5}{\sqrt{x}+1}\ge5\Leftrightarrow1-\dfrac{5}{\sqrt{x}+1}\le-4\)
\(P_{max}=-4\Leftrightarrow x=0\)
9.
a, \(x^4-x^3-14x^2+x+1=0\)
\(< =>x^4+3x^3-x^2-4x^3-12x^2+4x-x^2-3x+1=0\)
\(< =>x^2\left(x^2+3x-1\right)-4x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)=0\)
\(< =>\left(x^2-4x-1\right)\left(x^2+3x-1\right)=0\)
\(=>\left[{}\begin{matrix}x^2-4x-1=0\left(1\right)\\x^2+3x-1=0\left(2\right)\end{matrix}\right.\)
giải pt(1) \(=>x^2-4x+4-5=0< =>\left(x-2\right)^2-\sqrt{5}^2=0\)
\(=>\left(x-2-\sqrt{5}\right)\left(x-2+\sqrt{5}\right)=0\)
\(=>\left[{}\begin{matrix}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{matrix}\right.\)
giải pt(2) \(\)\(=>x^2+3x-1=0< =>x^2+2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{13}{4}=0\)
\(< =>\left(x+\dfrac{3}{2}\right)^2-\left(\dfrac{\sqrt{13}}{2}\right)^2=0\)
\(=>\left(x+\dfrac{3}{2}+\dfrac{\sqrt{13}}{2}\right)\left(x+\dfrac{3}{2}-\dfrac{\sqrt{13}}{2}\right)=0\)
tương tự cái pt(1) ra nghiệm rồi kết luận
b, đặt \(\sqrt{x^2+1}=a\left(a\ge1\right)=>x^2+1=a^2\)
\(=>x^4=\left(a^2-1\right)^2\)
\(=>pt\) \(\left(a^2-1\right)^2+a^2.a-1=0\)
\(=>a^4-2a^2+1+a^3-1=0\)
\(< =>a^4-2a^2+a^3=0< =>a^2\left(a+2\right)\left(a-1\right)=0\)
\(->\left[{}\begin{matrix}a=0\left(ktm\right)\\a=-2\left(ktm\right)\\a=1\left(tm\right)\end{matrix}\right.\)rồi thế a vào \(\sqrt{x^2+1}\)
\(=>x=0\)
Bài 2:
a: \(\dfrac{2-\sqrt{3}}{3\sqrt{6}}=\dfrac{2\sqrt{6}-3\sqrt{2}}{18}\)
b: \(\dfrac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\sqrt{2}\)