Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Giải:
Ta có: \(\widehat{N_4}=\widehat{N_1}=120^o\) ( đối đỉnh )
Ta thấy \(\widehat{N_1}+\widehat{M_1}=180^o\) và 2 góc này ở vị trí trong cùng phía nên suy ra a // b
Vì a // b nên \(\widehat{M_1}=\widehat{N_3}=60^o\) ( đồng vị )
\(\widehat{N_3}=\widehat{N_2}=60^o\) ( đối đỉnh )
Vậy a // b
\(\widehat{N_1}=120^o,\widehat{N_2}=60^o,\widehat{N_3}=60^o\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
1: Xét ΔAEB và ΔCED có
EA=EC
EB=ED
AB=CD
=>ΔAEB=ΔCED
2: ΔAEB=ΔCED
=>góc BAE=góc DCE
=>góc BAE=góc CAE
=>AE là phân giác của góc BAC
1:
a: Xét ΔBCD vuông tại B và ΔKCD vuông tại K có
CD chung
\(\widehat{BCD}=\widehat{KCD}\)
Do đó: ΔBCD=ΔKCD
Suy ra: BC=KC
=>ΔBKC cân tại C
mà \(\widehat{BCK}=60^0\)
nên ΔBKC đều
b: Ta có: BC=KC
nên C nằm trên đường trung trực của BK(1)
Ta có: DB=DK
nên D nằm trên đường trung trực của BK(2)
Từ (1) và (2) suy ra DC là đường trung trực của BK
H (x) = 0
\(\Rightarrow-x^2+2x-4=0\)
\(\Rightarrow x^2-2x+4=0\)
\(\Rightarrow\left(x^2-2x+1\right)+3=0\)
\(\Rightarrow\left(x-1\right)^2+3=0\)
Mà: \(\left(x-1\right)^2+3>0\)
=> Vô lí
=> H(x) vô nghiệm
a: f(-1)=5-3=2
f(3/2)=-15/2-3=-21/2
b: y=-8 thì -5x-3=-8
=>-5x=-5
hay x=1
y=0 thì -5x-3=0
=>-5x=3
hay x=-3/5