K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2023

a: \(y=3\cdot sinx+4\cdot cosx+1000\)

\(=5\left(\dfrac{3}{5}\cdot sinx+\dfrac{4}{5}\cdot cosx\right)+1000\)

\(=5\cdot\left(sinx\cdot cosa+cosx\cdot sina\right)+1000\)(Vì \(\left(\dfrac{3}{5}\right)^2+\left(\dfrac{4}{5}\right)^2=1\) nên \(sina=\dfrac{3}{5};cosa=\dfrac{4}{5}\))

\(=5\cdot sin\left(x+a\right)+1000\)

\(-1< =sin\left(x+a\right)< =1\)

=>\(-5< =5\cdot sin\left(x+a\right)< =5\)

=>\(-5+1000< =5\cdot sin\left(x+a\right)+1000< =1005\)

=>\(995< =y< =1005\)

Vậy: TGT là T=[995;1005]

b: TH1: sin x=0

=>\(x=k\Omega\)

Khi \(x=k\Omega\) thì \(cosx\cdot cos2x\cdot cos4x\cdot cos8x\)

\(=cos\left(k\Omega\right)\cdot cos\left(2\cdot k\Omega\right)\cdot cos\left(4\cdot k\Omega\right)\cdot cos\left(8\cdot k\Omega\right)\)

\(=\pm1\)

=>Trường hợp này loại

TH2: sin x<>0

\(cosx\cdot cos2x\cdot cos4x\cdot cos8x=\dfrac{1}{16}\)

=>\(2\cdot sinx\cdot cosx\cdot cos2x\cdot cos4x\cdot cos8x=\dfrac{1}{16}\cdot2\cdot sinx\)

=>\(sin2x\cdot cos2x\cdot cos4x\cdot cos8x=\dfrac{1}{8}\cdot sinx\)

=>\(2\cdot sin2x\cdot cos2x\cdot cos4x\cdot cos8x=\dfrac{1}{8}\cdot2\cdot sinx\)

=>\(sin4x\cdot cos4x\cdot cos8x=\dfrac{1}{4}\cdot sinx\)

=>\(2\cdot sin4x\cdot cos4x\cdot cos8x=\dfrac{1}{4}\cdot2\cdot sinx\)

=>\(sin8x\cdot cos8x=\dfrac{1}{2}\cdot sinx\)

=>\(2\cdot sin8x\cdot cos8x=sinx\)

=>\(sin16x=sinx\)

=>\(\left[{}\begin{matrix}16x=x+k2\Omega\\16x=\Omega-x+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{k2\Omega}{15}\\x=\dfrac{\Omega}{17}+\dfrac{k2\Omega}{17}\end{matrix}\right.\)

29 tháng 12 2021

Câu5: 

Gọi 4 chữ số đc lập lần lượt là a,b,c,d  các số chia hết cho 2 thì d phải thuộc 0;2;6

TH1: d=0 -> d có 1 cách chọn, a có 6 cách chọn, b có 5 cách chọn , c có 4 cách chọn            a×b×c×d= 6×5×4×1=120

TH2 : d là 2 hoặc 6 -> d có 2 cách chọn , a có 5 cách chọn( trừ số 0) ,  b có 5 cách chọn, c có 4 cách chọn.                          a×b×c×d= 5×5×4×2=200 

Th1+ TH2 = 120+200=320 

Đáp án c

 

 

 

 

 

 

 

 

29 tháng 12 2021

Câu 6 : có 4! Cách lập 

4! = 24 

Đáp án d   

Câu 7 :

Theo nhị thức Newton thì chỉ cần nhìn vào 2 số đầu và cuối

(a+b)⁵ thì a=⁵√243x⁵ = 3x                     b =⁵√-1=-1                           => (3x-1)⁵   đáp án D   

Câu 8: chia làm 2 trường hợp 2 nữa 1 nam hoặc 2 nam 1 nữ.

Đáp án C

 

 

 

 

 

 

20 tháng 2 2022

\(lim\left(n-\sqrt{n^2-4n+2}\right)\)

\(=lim\dfrac{n^2-\left(n^2-4n+2\right)}{n+\sqrt{n^2-4n+2}}\)

\(=lim\dfrac{4n-2}{n+\sqrt{n^2-4n+2}}\)

\(=lim\dfrac{4-\dfrac{2}{n}}{1+\sqrt{1-\dfrac{4}{n}+\dfrac{2}{n^2}}}\)

\(=2\)

19 tháng 12 2021

\(\left\{{}\begin{matrix}6u_2+u_5=1\\3u_3+2u_4=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6u_1.q+u_1.q^4=1\\3u_1.q^2+2u_1.q^3=-1\end{matrix}\right.\)

\(\Rightarrow u_1\left(6q+q^4+3q^2+2q^3\right)=0\)

\(\Leftrightarrow q^3+2q^2+3q+6=0\)

\(\Leftrightarrow\left(q+2\right)\left(q^2+3\right)=0\)

\(\Leftrightarrow q=-\text{​​}2\)

\(\Rightarrow u_1=\dfrac{1}{4}\)

\(\Rightarrow u_n=u_1.q^{n-1}=\dfrac{1}{4}.\left(-2\right)^{n-1}=\left(-2\right)^{n-3}\)

NV
23 tháng 3 2022

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x-2}+1}{\sqrt[]{x+3}-2}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{x-2}+1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)\left(\sqrt[]{x+3}+2\right)}{\left(\sqrt[]{x+3}-2\right)\left(\sqrt[]{x+3}+2\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(\sqrt[]{x+3}+2\right)}{\left(x-1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{x+3}+2}{\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1}\)

\(=\dfrac{\sqrt[]{1+3}+2}{\sqrt[3]{\left(1-2\right)^2}-\sqrt[3]{1-2}+1}=\dfrac{4}{3}\)

23 tháng 3 2022

em cảm ơn ạ

NV
19 tháng 3 2022

Giới hạn này thiếu x tiến tới bao nhiêu nên ko tính được

11 tháng 3 2022

theo mình thì câu trên: dưới mẫu trong căn bỏ n^2 ra làm nhân tử chung xong đặt nhân tử chung của cả mẫu là n^2 . câu dưới thì mình k biết!!

 

NV
11 tháng 3 2022

\(\lim\dfrac{-3n+2}{n-\sqrt{4n+n^2}}=\lim\dfrac{\left(-3n+2\right)\left(n+\sqrt{4n+n^2}\right)}{\left(n-\sqrt{4n+n^2}\right)\left(n+\sqrt{4n+n^2}\right)}\)

\(=\lim\dfrac{\left(-3n+2\right)\left(n+\sqrt{4n+n^2}\right)}{-4n}=\lim\dfrac{n\left(-3+\dfrac{2}{n}\right)n\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4n}\)

\(=\lim n\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}\)

Do \(\lim\left(n\right)=+\infty\)

\(\lim\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}=\dfrac{\left(-3+0\right)\left(1+\sqrt{0+1}\right)}{-4}=\dfrac{3}{2}>0\)

\(\Rightarrow\lim n\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}=+\infty\)

NV
9 tháng 3 2022

\(\lim\dfrac{3^n+2.6^n}{6^{n-1}+5.4^n}=\lim\dfrac{6^n\left[\left(\dfrac{3}{6}\right)^n+2\right]}{6^n\left[\dfrac{1}{6}+5\left(\dfrac{4}{6}\right)^n\right]}=\lim\dfrac{\left(\dfrac{3}{6}\right)^n+2}{\dfrac{1}{6}+5\left(\dfrac{4}{6}\right)^n}=\dfrac{0+2}{\dfrac{1}{6}+0}=12\)

\(\lim\left(\sqrt{n^2+9}-n\right)=\lim\dfrac{\left(\sqrt{n^2+9}-n\right)\left(\sqrt{n^2+9}+n\right)}{\sqrt{n^2+9}+n}=\lim\dfrac{9}{\sqrt{n^2+9}+n}\)

\(=\lim\dfrac{n\left(\dfrac{9}{n}\right)}{n\left(\sqrt{1+\dfrac{9}{n^2}}+1\right)}=\lim\dfrac{\dfrac{9}{n}}{\sqrt{1+\dfrac{9}{n^2}}+1}=\dfrac{0}{1+1}=0\)

\(\lim\dfrac{\sqrt{15+9n^2}-3}{5-n}=\lim\dfrac{n\sqrt{\dfrac{15}{n^2}+9}-3}{5-n}=\lim\dfrac{n\left(\sqrt{\dfrac{15}{n^2}+9}-\dfrac{3}{n}\right)}{n\left(\dfrac{5}{n}-1\right)}\)

\(=\lim\dfrac{\sqrt{\dfrac{15}{n^2}+9}-\dfrac{3}{n}}{\dfrac{5}{n}-1}=\dfrac{\sqrt{9}-0}{0-1}=-3\)

11 tháng 3 2022

em cảm ơn ạ