K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2017

Đặt m =  t 2  .Điều kiện m  ≥  0

Ta có: 36 t 4  – 13 t 2 +1 = 0 ⇔ 36 m 2 -13m +1 =0

Ta có:  ∆ = - 13 2  – 4.36.1=169 -144=25 > 0

∆ = 25  = 5

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:  t 2 =1/4 ⇒ t= ± 1/2

t 2  =1/9 ⇒ t= ± 1/3

Vậy phương trình đã cho có 4 nghiệm :

 

t 1 = 1/2 ;  t 2 = -1/2 ;  t 3  = 1/3 ;  t 4  = -1/3

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

22 tháng 6 2017

a) đặc \(x^2=t\left(t\ge0\right)\)

pt \(\Leftrightarrow\) \(t^2-8t-9=0\)

\(\Delta'=\left(-4\right)^2-1\left(-9\right)\) = \(16+9=25>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(t_1=\dfrac{4+\sqrt{25}}{1}=9\left(tmđk\right)\)

\(t_2=\dfrac{4-\sqrt{25}}{1}=-1\left(loại\right)\)

\(t=x^2=9\) \(\Leftrightarrow\) \(x=\pm9\)

vậy \(x=\pm9\)

12 tháng 7 2019

Đặt: \(x^2=t\)

Sao đó giải như pt bậc 2 bình thường 

12 tháng 7 2019

cops mạng đâu thế :((

4 tháng 4 2017

a, Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình đã cho trở thành: \(9t^2-10t+1=0\) (1)
Có a+b+c = 9 -10 +1 =0
=> Pt (1) có nghiệm: \(t_1=1;t_2=\dfrac{1}{9}\)( TMĐK của t )
Với \(t_1=1\) ta có \(x^2=1\Leftrightarrow x=\pm1\)
Với \(t_2=\dfrac{1}{9}\) ta có \(x^2=\dfrac{1}{9}\Leftrightarrow x=\pm\dfrac{1}{3}\)
Vậy phương trình đã cho có tập nghiệm S={-1;1;1/3;-1/3}

b, Pt \(\Leftrightarrow5x^4+3x^2-26=0\) (2)
Đặt \(x^2=t\left(t\ge0\right)\)
Pt (2) trở thành: \(5t^2+3t-26=0\)
\(\Leftrightarrow\left(t-2\right)\left(5t+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(TMĐK\right)\\t=-\dfrac{13}{5}\left(KTMĐK\right)\end{matrix}\right.\)
Với t=2 ta có: \(x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
Vậy pt đã cho có nghiệm \(x=\pm\sqrt{2}\)

c, Pt \(\Leftrightarrow3x^4+18x^2+15=0\) (3)
Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó pt (3) trở thành: \(3t^2+18t+15=0\)
\(\Leftrightarrow t^2+6t+5=0\)
\(\Leftrightarrow\left(t+1\right)\left(t+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=-5\end{matrix}\right.\) ( Không TMĐK)
Vậy pt đã cho vô nghiệm

d, ĐK: \(x\ne0\)
Pt \(\Leftrightarrow\dfrac{2x^3+x^2-1+4x^2}{x^2}=0\)
\(\Rightarrow2x^3+5x^2-1=0\)
\(\Leftrightarrow x^2\left(2x+1\right)+2x\left(2x+1\right)-\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x^2+2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\pm\sqrt{2}\end{matrix}\right.\)( TMĐK )
Vậy tập nghiệm của pt đã cho là \(S=\left\{-\dfrac{1}{2};-1+\sqrt{2};-1-\sqrt{2}\right\}\)

NV
8 tháng 4 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)

Ta có:

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)

\(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)

\(\Rightarrow T=\dfrac{136}{4}=34\)

8 tháng 4 2022

pt đã cho có \(\Delta'=\left(-6\right)^2-1.4=32>0\)

\(\Rightarrow\)pt đã cho có 2 nghiệm phân biệt 

Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=12\\x_1x_2=4\end{cases}}\)

Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)

Mặt khác \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\)\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)

\(\Rightarrow T=\frac{136}{4}=34\)

15 tháng 6 2020

2 cái đầu = 2 ở đâu ra vậy ông ?

NV
15 tháng 6 2020

a/ Bạn tự giải

b/ \(\Delta'=m^2-4\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow4m^2+4m-8=0\Rightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\end{matrix}\right.\)

8 tháng 10 2021

loading...loading...

 

 

9 tháng 10 2021

a)\(\sqrt{4x+20}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)\(\sqrt{9x-45}\)=4  ; ĐKXĐ : x ≥_+ 5

⇔ \(\sqrt{2^2x+2^2.5}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)\(\sqrt{3^2x-3^2.5}\) =4

⇔ 2\(\sqrt{x+5}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)3\(\sqrt{x-5}\) =4 ⇔ 2\(\sqrt{x+5}\) +\(\sqrt{x-5}\) -\(\sqrt{x-5}\) =4⇔2\(\sqrt{x+5}\)=4(tm)

\(\sqrt{x+5}\)=2⇔x+5=4 ⇔x=-1

                                          Vậy x=-1

b) \(\sqrt{x^2-36}\) - \(\sqrt{x-6}\) =0 ; ĐKXĐ: x≥_+6

⇔ \(\sqrt{\left(x-6\right)\left(x+6\right)}\) - \(\sqrt{x-6}\)  =0 ⇔ \(\sqrt{x-6}\).\(\sqrt{x+6}\) - \(\sqrt{x-6}\) =0

⇔ \(\sqrt{x-6}\)(\(\sqrt{x+6}\) -1 )=0 ⇔\([\) \(\begin{matrix}\sqrt{x-6}&=0\\\sqrt{x+6}-1&=0\end{matrix}\) ⇔ \([\) \(\begin{matrix}x-6&=0\\x+6-1&=0\end{matrix}\) ⇔\([\) \(\begin{matrix}x&=6\left(ktm\right)\\x&=-5\left(tm\right)\end{matrix}\)

                                             Vậy x=-5

c) \(\sqrt{4-x^2}\) -x +2 =0 ; ĐKXĐ: -2≤x≤2

⇔ \(\sqrt{\left(2-x\right)\left(2+x\right)}\) -x+2 =0  ⇔  \(\sqrt{\left(2-x\right)\left(2+x\right)}\) -(x-2)=0

⇔  \(\sqrt{\left(2-x\right)\left(2+x\right)}\) =(x-2) ⇔ (2-x)(2+x)=(x-2)2 ⇔ 4-x2 = x2-4x+4 ⇔ -x2-x2+4x=4-4

        ⇔-2x2+4x=0 ⇔ -2x(x-2)=0 ⇔ \([\) \(\begin{matrix}-2x&=0\\x-2&=0\end{matrix}\) ⇔\([\) \(\begin{matrix}x&=0\left(tm\right)\\x&=2\left(tm\right)\end{matrix}\)

                                          Vậy S=\(\left\{0;2\right\}\)

d) \(\sqrt{\left(2x-3\right)\left(x-1\right)}-\sqrt{x-1}=0\) ; ĐKXĐ: x≥\(\dfrac{3}{2}\);x ≥ 1

\(\sqrt{2x-3}.\sqrt{x-1}-\sqrt{x-1}=0\) ⇔ \(\sqrt{x-1}.\left(\sqrt{2x-3}-1\right)=0\) 

⇔ \(\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{2x-3}-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x-1=0\\2x-3-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=1\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

             Vậy s=\(\left\{1:2\right\}\)