K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

a, Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình đã cho trở thành: \(9t^2-10t+1=0\) (1)
Có a+b+c = 9 -10 +1 =0
=> Pt (1) có nghiệm: \(t_1=1;t_2=\dfrac{1}{9}\)( TMĐK của t )
Với \(t_1=1\) ta có \(x^2=1\Leftrightarrow x=\pm1\)
Với \(t_2=\dfrac{1}{9}\) ta có \(x^2=\dfrac{1}{9}\Leftrightarrow x=\pm\dfrac{1}{3}\)
Vậy phương trình đã cho có tập nghiệm S={-1;1;1/3;-1/3}

b, Pt \(\Leftrightarrow5x^4+3x^2-26=0\) (2)
Đặt \(x^2=t\left(t\ge0\right)\)
Pt (2) trở thành: \(5t^2+3t-26=0\)
\(\Leftrightarrow\left(t-2\right)\left(5t+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(TMĐK\right)\\t=-\dfrac{13}{5}\left(KTMĐK\right)\end{matrix}\right.\)
Với t=2 ta có: \(x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
Vậy pt đã cho có nghiệm \(x=\pm\sqrt{2}\)

c, Pt \(\Leftrightarrow3x^4+18x^2+15=0\) (3)
Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó pt (3) trở thành: \(3t^2+18t+15=0\)
\(\Leftrightarrow t^2+6t+5=0\)
\(\Leftrightarrow\left(t+1\right)\left(t+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=-5\end{matrix}\right.\) ( Không TMĐK)
Vậy pt đã cho vô nghiệm

d, ĐK: \(x\ne0\)
Pt \(\Leftrightarrow\dfrac{2x^3+x^2-1+4x^2}{x^2}=0\)
\(\Rightarrow2x^3+5x^2-1=0\)
\(\Leftrightarrow x^2\left(2x+1\right)+2x\left(2x+1\right)-\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x^2+2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\pm\sqrt{2}\end{matrix}\right.\)( TMĐK )
Vậy tập nghiệm của pt đã cho là \(S=\left\{-\dfrac{1}{2};-1+\sqrt{2};-1-\sqrt{2}\right\}\)

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

12 tháng 1 2017

làm tạm câu này vậy

a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)

\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)

\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)

\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)

\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)

\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)

Vậy...

12 tháng 1 2017

chuẩn

28 tháng 7 2018

a)  ĐK:  \(x\ge5\)

 \(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)

\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)

\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\) (t/m)

Vậy

b)  \(-5x+7\sqrt{x}=-12\)

\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)

đến đây tự làm

c) d) e) bạn bình phương lên

28 tháng 7 2018

f)  \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)

             \(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)

           \(\ge\sqrt{9}+\sqrt{25}=8\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)

Vậy...

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

9 tháng 9 2015

1. phương trình tương đương với \(\left(x^2-7x+2\right)\left(x^2+2x+2\right)=0\to x=\frac{7}{2}\pm\frac{\sqrt{41}}{2}\)

2. phương trình tương đương với \(\left(x^2+\left(\sqrt{2}-1\right)x+1\right)\left(x^2+\left(\sqrt{2}+1\right)x-1\right)=0\to x=\frac{-1\pm\sqrt{2}\pm\sqrt{7-2\sqrt{2}}}{2}\) với dấu +,- lấy tuỳ ý

9 tháng 9 2015

Quan trọng là cách làm kìa. Chứ bấm máy là nghề của anh

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 1:

PT \(\Leftrightarrow x^2+3x+8=(x+5)\sqrt{x^2+x+2}\)

\(\Leftrightarrow (x^2+x+2)+2(x+5)-4=(x+5)\sqrt{x^2+x+2}\)

Đặt \(\sqrt{x^2+x+2}=a; x+5=b(a\geq 0)\)

\(PT\Leftrightarrow a^2+2b-4=ba\)

\(\Leftrightarrow (a^2-4)-b(a-2)=0\)

\(\Leftrightarrow (a-2)(a+2-b)=0\Rightarrow \left[\begin{matrix} a=2\\ a+2=b\end{matrix}\right.\)

Nếu \(a=2\Rightarrow x^2+x+2=a^2=4\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow (x-1)(x+2)=0\Rightarrow x=1; x=-2\) (đều thỏa mãn)

Nếu \(a+2=b\Leftrightarrow \sqrt{x^2+x+2}+2=x+5\)

\(\Leftrightarrow \sqrt{x^2+x+2}=x+3\)

\(\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ x^2+x+2=(x+3)^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ 5x+7=0\end{matrix}\right.\Rightarrow x=\frac{-7}{5}\) (thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 2:

ĐKXĐ: \(x\geq 1\) hoặc \(x\leq \frac{1}{2}\)

\(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)

\(\Leftrightarrow 3(2x^2-3x+1)-8x\sqrt{2x^2-3x+1}+4x^2=0\)

Đặt \(\sqrt{2x^2-3x+1}=a(a\geq 0)\)

Khi đó PT \(\Leftrightarrow 3a^2-8xa+4x^2=0\)

\(\Leftrightarrow (a-2x)(3a-2x)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ 3a=2x\end{matrix}\right.\)

Nếu \(a=\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2-3x+1=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2+3x-1=0\end{matrix}\right.\Rightarrow x=\frac{-3+\sqrt{17}}{4}\) (t/m)

Nếu \(3a=3\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 9(2x^2-3x+1)=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 14x^2-27x+9=0\end{matrix}\right.\Rightarrow x=\frac{3}{2}; x=\frac{3}{7}\) (t/m)

Vậy...........

a,x4-10x2+9=0

=>(x-1)(x3+x2-9x-9)=0

=> (x-1)(x+1)(x-3)(x+3)=0

=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)

Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}

16 tháng 4 2019

trả lời

h bn tính theo đenta là ra thôi mà

hok tốt

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)