\(x^2+x-1=0\), Không giải phương trình, t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

theo đầu bài ta có

x1x2<0

Ta sử dụng hệ thức VIet

x1x2=\(\frac{c}{a}\)=-1

=> Pt có 2 nghiệm trái dấu

Phần còn lại tính nghiệm ra rồi thay vao máy tính tính

22 tháng 5 2017

giảm bậc bạn

29 tháng 5 2017

bạn giúp mình được k

23 tháng 12 2017

Ta có:

\(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Rightarrow\) Phương trình vô nghiệm

Vậy có trời mới biết D nó là bao nhiêu.

23 tháng 12 2017

hiha

4 tháng 4 2017

a) 2x2 – 17x + 1 = 0 có a = 2, b = -17, c = 1

∆ = (-17)2 – 4 . 2 . 1 = 289 – 8 = 281

x1 + x2 = = ; x1x2 =

b) 5x2 – x + 35 = 0 có a = 5, b = -1, c = -35

∆ = (-1)2 – 4 . 5 . (-35) = 1 + 700 = 701

x1 + x2 = = ; x1x2 = = -7

c) 8x2 – x + 1 = 0 có a = 8, b = -1, c = 1

∆ = (-1)2 – 4 . 8 . 1 = 1 - 32 = -31 < 0

Phương trình vô nghiệm nên không thể điền vào ô trống được.

d) 25x2 + 10x + 1 = 0 có a = 25, b = 10, c = 1

∆ = 102 – 4 . 25 . 1 = 100 - 100 = 0

x1 + x2 = = ; x1x2 =



4 tháng 4 2017

a) 2x2 – 17x + 1 = 0 có a = 2, b = -17, c = 1

∆ = (-17)2 – 4 . 2 . 1 = 289 – 8 = 281

x1 + x2 = = ; x1x2 =

b) 5x2 – x + 35 = 0 có a = 5, b = -1, c = -35

∆ = (-1)2 – 4 . 5 . (-35) = 1 + 700 = 701

x1 + x2 = = ; x1x2 = = -7

c) 8x2 – x + 1 = 0 có a = 8, b = -1, c = 1

∆ = (-1)2 – 4 . 8 . 1 = 1 - 32 = -31 < 0

Phương trình vô nghiệm nên không thể điền vào ô trống được.

d) 25x2 + 10x + 1 = 0 có a = 25, b = 10, c = 1

∆ = 102 – 4 . 25 . 1 = 100 - 100 = 0

x1 + x2 = = ; x1x2 =

1 tháng 5 2019

pt có 2 nghiệm pb dương

 <=> {delta=25-4m>0 

         { x1+x2=5>0

         {x1..x2=m>0

<=> 0<m <25/4

( x1canx2+x2canx1)2=36

x1^2..x2 +x1 ..x2^2 +2 (x1×x2)can (x1×x2)=36

sau đó sử ddụng viet và thay vào

mn cho mk hỏi

nếu đđặt câu hỏi trên OLM này thì khi có người giải đáp cho mk thì có thông báo k z

1 tháng 5 2020

Lập \(\Delta=25-4m\)

Phương trình có 2 nghiệm \(x_1;x_2\)khi \(\Delta\ge0\)hay \(m\le\frac{25}{4}\)

Áp dụng hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=m\end{cases}}\)

2 nghiệm \(x_1;x_2\)dương khi \(\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}}\)hay m>0

Điều kiện để pt có 2 nghiệm dương  x1;x2 là \(0< m< \frac{25}{4}\)(*)

Ta có \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=5+2\sqrt{m}\)

=> \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{5+2\sqrt{m}}\)

Ta có \(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\Leftrightarrow\sqrt{x_1x_2}\left(\sqrt{x_1}+\sqrt{x_2}\right)=6\)

hay \(\sqrt{m}\sqrt{5+2\sqrt{m}}=6\Leftrightarrow2m\sqrt{m}+5m-36=0\left(1\right)\)

Đặt \(t=\sqrt{m}\ge0\)khi đó (1) trở thành

\(\Leftrightarrow2t^2+5t^2-36=0\)

\(\Leftrightarrow\left(t-2\right)\left(2t^2+9t+18\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\2t^2+9t+18=0\end{cases}\Rightarrow t=2\Rightarrow m=4\left(tmđk\right)}\)

(vì 2t2+9t+18 vô nghiệm)

Vậy m=4 thì pt đã cho có 2 nghiệm dương x1;x2 thỏa mãn \(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)

2 tháng 3 2022

\(\left(-5\right)^2-4.\left(-3\right)\left(-2\right)=25-24=1>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)

\(M=x_1+\dfrac{1}{x_1}+\dfrac{1}{x_2}+x_2\\ =\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\\ =\dfrac{-5}{3}+\dfrac{-5}{3}:\dfrac{2}{3}\\ =\dfrac{-5}{3}-\dfrac{5}{2}\\ =\dfrac{-25}{6}\)

-3x2-5x-2=0

Ta có :-3-(-5)-2=0

=>Phương trình có 2 nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-5}{3}\end{cases}}\)

Thay x1;x2 vào M ta được:

M=(-1)+\(\frac{1}{-1}\)+\(\frac{1}{\frac{-5}{3}}\)+\(\frac{-5}{3}\)

=(-1)+(-1)+\(-\frac{3}{5}+-\frac{5}{3}\)

=\(-\frac{64}{15}\)