K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

Đặt m = x 2  .Điều kiện m ≥ 0

Ta có: 1/3. x 4  - 1/2. x 2  +1/6 =0⇔ 2 x 4  -3 x 2  +1=0 ⇔ 2 m 2  -3m + 1 =0

Phương trình 2 m 2  -3m + 1 =0 có hệ số a=2,b=-3,c=1 nên có dạng a +b+c =0

suy ra:  m 1  = 1 ,  m 2  = 1/2

Ta có:  x 2  = 1 ⇒ x = ± 1

x 2 = 1/2 ⇒ x = ± 2 /2

Vậy phương trình đã cho có 4 nghiệm :

x 1  =1 ;  x 2  =-1 ;  x 3  =( 2 )/2;  x 4  = -  2 /2

22 tháng 6 2017

a) đặc \(x^2=t\left(t\ge0\right)\)

pt \(\Leftrightarrow\) \(t^2-8t-9=0\)

\(\Delta'=\left(-4\right)^2-1\left(-9\right)\) = \(16+9=25>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(t_1=\dfrac{4+\sqrt{25}}{1}=9\left(tmđk\right)\)

\(t_2=\dfrac{4-\sqrt{25}}{1}=-1\left(loại\right)\)

\(t=x^2=9\) \(\Leftrightarrow\) \(x=\pm9\)

vậy \(x=\pm9\)

1 1 5(4x+7y=164x-3y =-24* y 2b)1 1 3Bài 1. Giải hệ phương trình: a)x y 2Bài 2. Giải các phương trình sau:a) x- 10x + 21 = 0;b) 5x – 17x + 12 = 0c) 2x* - 7x? – 4 = 0;16d)x-3 1-x30= 3Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.X x,= 4b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏaX X,Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0a) Giải phương trình (1) với m= -4b) Với x1, X2 là...
Đọc tiếp

1 1 5
(4x+7y=16
4x-3y =-24
* y 2
b)
1 1 3
Bài 1. Giải hệ phương trình: a)
x y 2
Bài 2. Giải các phương trình sau:
a) x- 10x + 21 = 0;
b) 5x – 17x + 12 = 0
c) 2x* - 7x? – 4 = 0;
16
d)
x-3 1-x
30
= 3
Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
X x,
= 4
b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏa
X X,
Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0
a) Giải phương trình (1) với m= -4
b) Với x1, X2 là nghiệm phương trình (1). Tìm giá trị của m, biết x1- X2 = 2
Bài 5. Một hình chữ nhật có chiều rộng bé hơn chiều dài là 4m, biết diện tích 320m?. Tính chiều
dài, chiều rộng hình chữ nhật.
Bài 6. Đội một gặt lúa trong 4 giờ thì đội hai đến gặt. Hai đội gặt trong 8 giờ thì xong công việc.
Hỏi nếu gặt một mình thì mỗi đội gặt trong bao lâu thì xong, biết nếu gặt một mình đội một gặt
nhiều thời gian hơn đội hai là 8 giờ.
(1)
Bài 7. Cho tam giác ABC có ba góc nhọn nối tiếp (O). Vẽ hai đường cao BE và CF.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn.
b) Chứng minh AFE = ACB
c) Chứng minh AO1EF

0

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

11 tháng 4 2019

Ta có:  x 4  + 2 x 2  – x + 1 = 15 x 2 – x – 35

⇔  x 4  + 2 x 2  – x + 1 - 15 x 2  + x + 35 = 0

⇔  x 4  – 13 x 2  + 36 = 0

Đặt m = x 2 . Điều kiện m ≥ 0

Ta có:  x 4  – 13 x 2  + 36 = 0 ⇔  m 2  – 13m + 36 = 0

∆ = - 13 2  – 4.1.36 = 169 – 144 = 25 > 0

∆ = 25 = 5

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: x 2  = 9 ⇒ x = ± 3

x 2  = 4 ⇒ x =  ± 2

Vậy phương trình đã cho có 4 nghiệm:  x 1  = 3;  x 2  = -3;  x 3  = 2;  x 4  = -2

28 tháng 8 2021

\(a,\) Đặt \(x^2+2x=a\), pt trở thành:

\(a^2-3a+2=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=0\left(1\right)\\x^2+2x-2=0\left(2\right)\end{matrix}\right.\)

\(\left[{}\begin{matrix}\Delta\left(1\right)=4+4=8\\\Delta\left(2\right)=4+8=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{8}}{2}\\x=\dfrac{-2+\sqrt{8}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{12}}{2}\\x=\dfrac{-2+\sqrt{12}}{2}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1-\sqrt{2}\\x=-1+\sqrt{2}\\x=-1-\sqrt{3}\\x=-1+\sqrt{3}\end{matrix}\right.\)

\(b,\) Đặt \(x^2+x=b\), pt trở thành:

\(b\left(b+1\right)-6=0\\ \Leftrightarrow b^2+b-6=0\\ \Leftrightarrow\left[{}\begin{matrix}b=2\\b=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\\x\in\varnothing\left[x^2+x+3=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\right]\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(d,x^4-2x^3+x=2\\ \Leftrightarrow x^4-2x^3+x-2=0\\\Leftrightarrow\left(x^3+1\right)\left(x-2\right)=0 \\ \Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x\in\varnothing\left[x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\right]\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

a. 

PT $\Leftrightarrow (x^2+2x)^2-(x^2+2x)-2[(x^2+2x)-1]=0$

$\Leftrightarrow (x^2+2x)(x^2+2x-1)-2(x^2+2x-1)=0$

$\Leftrightarrow (x^2+2x-1)(x^2+2x-2)=0$

$\Leftrightarrow x^2+2x-1=0$ hoặc $x^2+2x-2=0$

$\Leftrightarrow x=-1\pm \sqrt{2}$ hoặc $x=-1\pm \sqrt{3}$

b.

PT $\Leftrightarrow (x^2+x)^2+(x^2+x)-6=0$

$\Leftrightarrow (x^2+x)^2-2(x^2+x)+3(x^2+x)-6=0$

$\Leftrightarrow (x^2+x)(x^2+x-2)+3(x^2+x-2)=0$

$\Leftrightarrow (x^2+x-2)(x^2+x+3)=0$

$\Leftrightarrow x^2+x-2=0$ (chọn) hoặc $x^2+x+3=0$ (loại do $x^2+x+3=(x+0,5)^2+2,75>0$)

$\Leftrightarrow x=-1\pm \sqrt{3}$

c. Nghiệm khá xấu. Bạn coi lại đề.

d.

PT $\Leftrightarrow x^3(x-2)+(x-2)=0$

$\Leftrightarrow (x^3+1)(x-2)=0$

$\Leftrightarrow x^3+1=0$ hoặc $x-2=0$

$\Leftrightarrow x=-1$ hoặc $x=2$

 

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

6 tháng 6 2021

a) ĐKXĐ: \(x^2-1\ge0\)

Đặt \(\sqrt{x^2-1}=t\left(t\ge0\right)\)

\(\Rightarrow t=t^2\Rightarrow t\left(t-1\right)=0\Rightarrow\left[{}\begin{matrix}t=0\\t=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=0\\\sqrt{x^2-1}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\right.\)

b) ĐKXĐ: \(x\ge2\)

Ta có: \(\sqrt{x-2}+\sqrt{x-3}\ge0\) mà \(\sqrt{x-2}+\sqrt{x-3}=-5< 0\Rightarrow\) không có x thỏa

c) \(\sqrt{x^2+4x+4}+\left|x-4\right|=0\)

\(\Rightarrow\left|x+2\right|+\left|x-4\right|=0\) mà \(\left|x+2\right|+\left|x-4\right|\ge0\Rightarrow\left\{{}\begin{matrix}x+2=0\\x-4=0\end{matrix}\right.\)

\(\Rightarrow\) không có x thỏa