Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))
Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4
Vậy nghiệm duy nhất của phương trình là 4
f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)
\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)
\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)
\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
a) \(\sqrt{x+1}=x^2+4x+5\Leftrightarrow\left(x^2+4x+5\right)^2-\left(\sqrt{x+1}\right)^2=0\)
\(=x^4+8x^3+26x^2+39x+24\)
\(=\left(x^4+5x^3+8x^2\right)+\left(3x^3+15x^2+24x\right)+\left(3x^2+15x+24\right)\)
\(=x^2\left(x^2+5x+8\right)+3x\left(x^2+5x+8\right)+3\left(x^2+5x+8\right)\)
\(=\left(x^2+3x+3\right)\left(x^2+5x+8\right)=0\)
Xét hai TH
\(x^2+3x+3=0\)
\(\Rightarrow x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-3\pm\sqrt{9-12}}{2}\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{-3+\sqrt{3}i}{2}\\x_2=\frac{-\sqrt{3}i+3}{2}\end{cases}}\)
Tương tự với TH còn lại tính được hai nghiệm x3 và x4
b) Xét VT
\(2\sqrt{x^3-3x+2}=2\sqrt{x^3-1-3x+3}=2\sqrt{\left(x-1\right)^2\left(x+2\right)}\)
\(=2\left(x-1\right)\sqrt{x+2}\)
Xét VP
\(3\sqrt{x^3+8}=3\sqrt{x+2}\sqrt{x^2-2x+4}\)
\(\Rightarrow2\left(x-1\right)\sqrt{x+2}=3\sqrt{x+2}\sqrt{x^2-2x+4}\)
\(\Leftrightarrow2\left(x-1\right)=3\sqrt{x^2-2x+4}\)
\(\Leftrightarrow\frac{2}{3}=\frac{\sqrt{x^2-2x+4}}{x-1}\)
Bình phương hai vế ta được
\(\Leftrightarrow\frac{4}{9}=\frac{x^2-2x+4}{x^2-2x+1}\)
\(\Rightarrow4\left(x^2-2x+1\right)=9\left(x^2-2x+4\right)\)
\(\Rightarrow4x^2-8x+4=9x^2-18x+36\)
\(\Rightarrow4x^2-8x+4-9x^2+18x-36=4x^2-9x^2+4-36-8x+18x=0\)
\(\Rightarrow-5x^2-32+10x=0\)
Giải phương trình bậc hai ra được hai nghiệm
\(x_1=1-\frac{3\sqrt{15}i}{5}\)
\(x_2=1+\frac{3\sqrt{15}i}{3}\)
P/s hình như mình giải sai chỗ nào nên nó thiếu nghiệm thì phải.Lên Cymath bấm nó còn một nghiệm x=-2 nữa nhưng ko biết cách làm