K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

\(\)Sửa lại đề câu a:

\(a.\frac{x-13}{2006}+\frac{x-22}{1997}+\frac{x-21}{1998}=3\\ \Leftrightarrow\frac{x-13}{2006}-1+\frac{x-22}{1997}-1+\frac{x-21}{1998}-1=0\\\Leftrightarrow \frac{x-2019}{2006}+\frac{x-2019}{1997}+\frac{x-2019}{1998}=0\\ \Leftrightarrow\left(x-2019\right)\left(\frac{1}{2006}+\frac{1}{1997}+\frac{1}{1998}\right)=0\\\Leftrightarrow x-2019=0\left(Vi\frac{1}{2006}+\frac{1}{1997}+\frac{1}{1998}\ne0\right)\\\Leftrightarrow x=2019\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{2019\right\}\)

9 tháng 2 2020

Đặt \(y=x^2+x\) ta có:

\(y^2+4y=12\\\Leftrightarrow y^2+4y-12=0\\\Leftrightarrow y^2+4y+4-16=0\\ \Leftrightarrow\left(y+2\right)^2-4^2=0\\\Leftrightarrow \left(y+2-4\right)\left(y+2+4\right)=0\\ \Leftrightarrow\left(y-2\right)\left(y+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}y-2=0\\y+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=2\\y=-6\end{matrix}\right.\)

Thay \(y=x^2+x\) vào ta có:

\(x^2+x=2\\ \Leftrightarrow x^2+x-2=0\\ \Leftrightarrow x^2-x+2x-2=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(x^2+x=-6\\ \Rightarrow x^2+x+6\ge0\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-2\right\}\)

2 tháng 7 2020

\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)

\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)

\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)

\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)

\(< =>3072-107x=\frac{38x-684}{5}\)

\(< =>\left(3072-107x\right)5=38x-684\)

\(< =>15360-535x-38x-684=0\)

\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)

nghệm xấu thế 

2 tháng 7 2020

\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)

\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)

\(< =>993-33x-11x-415=0\)

\(< =>578=44x< =>x=\frac{289}{22}\)

11 tháng 1 2020

a)x=2015

11 tháng 1 2020

ai hok biết, giải ra giùm

31 tháng 5 2017

câu 2 :

 \(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0

\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)

\(\Rightarrow x+2009=0\)

\(\Rightarrow x=-2009\)

12 tháng 3 2020

a/Viết đề mà cx sai đc nữa: \(\left(\frac{x+2}{98}+1\right)\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)\left(\frac{x+5}{95}+1\right)\)

\(\Leftrightarrow\frac{x+100}{98}.\frac{x+100}{97}-\frac{x+100}{96}.\frac{x+100}{95}=0\)

\(\Leftrightarrow\left(x+100\right)^2\left(\frac{1}{98.97}-\frac{1}{96.95}\right)=0\)

\(\Rightarrow x=-100\)

b/\(\Leftrightarrow\left(\frac{x+1}{1998}+1\right)+\left(\frac{x+2}{1997}+1\right)=\left(\frac{x+3}{1996}+1\right)+\left(\frac{x+4}{1995}+1\right)\)

\(\Leftrightarrow\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}=0\)

\(\Leftrightarrow\left(x+1999\right)\left(...\right)=0\Rightarrow x=-1999\)

12 tháng 3 2020

b,\(\frac{x+1}{1998}+\frac{x+2}{1997}=\frac{x+3}{1996}+\frac{x+4}{1995}\)

=>\(\frac{x+1}{1998}+1\frac{x+2}{1997}+1=\frac{x+3}{1996}+1+\frac{x+4}{1995}+1\)

\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}=\frac{x+1999}{1996}+\frac{x+1999}{1995}\)

\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}\)=0

\(\Leftrightarrow\)\(\left(x+1999\right)\left(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\right)\)=0

\(\Leftrightarrow\)x+1999=0(Vì \(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\ne0\))

\(\Leftrightarrow\)x=-1999

Vậy x=-1999

17 tháng 7 2016

a)\(\frac{1}{x-1}\)-\(\frac{3x2}{x3-1}\)=\(\frac{2x}{x2+x+1}\)

<=> \(\frac{1}{x-1}\)-\(\frac{3x2}{\left(x-1\right)\left(x2+x+1\right)}\)=\(\frac{2x}{x2+x+1}\) ĐKXĐ: x khác 1

<=> x2+x+1 - 3x2 = 2x(x-1)

<=>x2+x+1 - 3x2 = 2x2-2x

<=>x2-3x-1=0( đoạn này làm nhanh nhé)

<=>x2-2*\(\frac{3}{2}\)x +\(\frac{9}{4}\)-\(\frac{9}{4}\)-1=0

<=>(x-\(\frac{3}{2}\))2-\(\frac{13}{4}\)=0

<=>(x-\(\frac{3-\sqrt{13}}{2}\))(x-\(\frac{3+\sqrt{13}}{2}\))=0

\(\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}\)

17 tháng 7 2016

b) pt... đkxđ x khác 1;2;3

<=>  3(x-3) +2(x-2)=x-1

<=>  3x-9 +2x-4 = x-1

<=> 4x= 12

<=>  x=3 ( ko thỏa đk)

vậy pt vô nghiệm

 

 

30 tháng 1 2019

\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)

\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)

30 tháng 1 2019

\(\text{Giải}\)

\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)

29 tháng 1 2018

A) Ta có: \(\frac{\left(x-2\right)\left(x+10\right)}{3}-\frac{\left(x+4\right)\left(x+10\right)}{12}=\frac{\left(x-2\right)\left(x+4\right)}{4}\)

\(\Leftrightarrow4\left(x-2\right)\left(x+10\right)-\left(x+4\right)\left(x+10\right)=3\left(x-2\right)\left(x+4\right)\)

\(\Leftrightarrow4\left(x^2+8x-20\right)-\left(x^2+14x+40\right)=3\left(x^2+2x-8\right)\)

\(\Leftrightarrow4x^2+32x-80-x^2-14x-40=3x^2+6x-24\)

\(\Leftrightarrow4x^2-x^2-3x^2+32x-14x-6x=-24+80+40\)

\(\Leftrightarrow12x=96\)

\(\Leftrightarrow x=8\)

Vậy x = 8

B) Ta có: \(\frac{\left(x+2\right)^2}{8}-2\left(2x+1\right)=25+\frac{\left(x-2\right)^2}{8}\)

\(\Leftrightarrow\left(x+2\right)^2-2.8\left(2x+1\right)=25.8+\left(x-2\right)^2\)

\(\Leftrightarrow x^2+4x+4-32x-16=200+x^2-4x+4\)

\(\Leftrightarrow x^2-x^2+4x-32x+4x=200+4-4+16\)

\(\Leftrightarrow-24x=216\)

\(\Leftrightarrow x=-9\)

Vậy x = -9

27 tháng 9 2020

999+2819=

\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)

\(=>x^2+x+1-3x^2=2x\left(x-1\right)\)

\(=>-2x^2+x+1=2x^2-2x\)

\(=>-4x^2+3x+1=0\)

\(=>\left(x-1\right)\left(x+\frac{1}{4}\right)=0\)'

\(=>\orbr{\begin{cases}x-1=0\\x+\frac{1}{4}\end{cases}=>\orbr{\begin{cases}x=1\\x=-\frac{1}{4}\end{cases}}}\)