K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(x^4-5x^2+4=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\\x=-2\end{matrix}\right.\)

Vậy: S={1;2;-1;-2}

30 tháng 6 2021

đặt \(t=x^2\left(t\ge0\right)=>t^2-5t+4=0\)

\(=>\Delta=\left(-5\right)^2-4.4=9>0\)

\(=>\left[{}\begin{matrix}t1=\dfrac{5+\sqrt{9}}{2}=4\left(tm\right)\\t2=\dfrac{5-\sqrt{9}}{2}=1\left(tm\right)\end{matrix}\right.\)

với \(t=t1=>x=\pm2\)

với \(t=t2=>x=\pm1\)

7 tháng 7 2021

1.Thay m=-1 vào pt ta được:

\(x^4-2x^2-3=0\)\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vn\right)\\x^2=3\end{matrix}\right.\)\(\Rightarrow x=\pm\sqrt{3}\)

Vậy...

2.Đặt \(t=x^2\left(t\ge0\right)\)

Với mỗi t>0 thì sẽ luôn có hai x phân biệt

Pttt: \(t^2-2t+m-2=0\) (2)

Để pt (1) có 4 nghiệm pb \(\Leftrightarrow\) PT (2) có hai nghiệm pb dương

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S=2>0\left(lđ\right)\\P=m-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4-4\left(m-2\right)>0\\m>2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\)\(\Rightarrow2< m< 3\)

Vậy...

NV
7 tháng 7 2021

1. Bạn tự giải

2. Đặt \(x^2=t\ge0\) pt trở thành:

\(t^2-2t+m-2=0\) (2)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (2) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(m-2\right)>0\\t_1+t_2=2>0\\t_1t_2=m-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\)

\(\Rightarrow2< m< 3\)

NV
7 tháng 7 2021

1. Bạn tự giải

2. Phương trình có 2 nghiệm khác 0 khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-\left(m^2-1\right)>0\\m^2-1\ne0\end{matrix}\right.\) \(\Leftrightarrow m\ne\pm1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{3}{4}\Rightarrow4\left(x_1+x_2\right)=3x_1x_2\)

\(\Leftrightarrow8m=3\left(m^2-1\right)\)

\(\Leftrightarrow3m^2-8m-3=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{1}{3}\end{matrix}\right.\)

1) Thay m=3 vào (1), ta được:

\(x-2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow x=9\)

27 tháng 6 2021

Ta có : \(x^2-2\sqrt{3}x+3=\left(x-\sqrt{3}\right)^2=0\)

\(\Rightarrow x=\sqrt{3}\)

Vậy ..
 

a) Thay m=-3 vào phương trình (1), ta được:

\(x-2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow x=9\)

30 tháng 6 2021

\(=>x^2-3x+2=0\)

\(=>a+b+C=0\)

\(=>\left[{}\begin{matrix}x1=1\\x2=2\end{matrix}\right.\)

x_1 sẽ cho ra kết quả \(x_1\)

2 tháng 11 2021

Đặt \(a=1;b=-1;c=m-1\)

a) Để phương trình đã cho có nghiệm thì \(\Delta=b^2-4ac=\left(-1\right)^2-4.1.\left(m-1\right)=1-4m+4=5-4m\ge0\Leftrightarrow m\le\frac{5}{4}\)

b) Gọi các nghiệm của phương trình đã cho là x1, x2.

Theo định lí Vi-ét, ta có: \(x_1+x_2=-\frac{b}{a}=-\frac{-1}{1}=1\)

Vậy tổng các nghiệm của phương trình đã cho là 1.

7 tháng 9 2021

a) \(\sqrt{x}=3\left(x\ge0\right)\Leftrightarrow x=9\)

b) \(\sqrt{x}=\sqrt{5}\left(x\ge0\right)\Leftrightarrow x=5\)

c) \(\sqrt{x}=0\left(x\ge0\right)\Leftrightarrow x=0\)

d) \(\sqrt{x}=-2\left(x\ge0\right)\Leftrightarrow x=\varnothing\)

e) \(\sqrt{x-2}=3\left(x\ge0\right)\Leftrightarrow x-2=9\Leftrightarrow x=11\)

g) \(\sqrt{2x-1}=5\left(x\ge0\right)\Leftrightarrow2x-1=25\Leftrightarrow2x=26\Leftrightarrow x=13\)

h) \(\sqrt{x-3}=0\left(x\ge0\right)\Leftrightarrow x-3=0\Leftrightarrow x=3\)

a: \(\sqrt{x}=3\)

nên x=9

b: \(\sqrt{x}=\sqrt{5}\)

nên x=5

c: \(\sqrt{x}=0\)

nên x=0

d: \(\sqrt{x}=-2\)

nên \(x\in\varnothing\)

e: \(\sqrt{x}-2=3\)

\(\Leftrightarrow\sqrt{x}=5\)

hay x=25

g: \(\sqrt{2x}-1=5\)

\(\Leftrightarrow2x=36\)

hay x=18

h: Ta có: \(\sqrt{x}-3=0\)

nên x=9