K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

4sin2x = 3 <=> \(\left[{}\begin{matrix}sinx=\frac{\sqrt{3}}{2}\\sinx=\frac{-\sqrt{3}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x=\frac{-\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

kết hợp nghiệm trên đường tròn lượng giác , ta suy ra B

NV
19 tháng 6 2019

\(sin\left(\frac{2x}{3}-\frac{\pi}{3}\right)=0\Rightarrow\frac{2x}{3}-\frac{\pi}{3}=k\pi\Rightarrow\frac{2x}{3}=\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{\pi}{2}+\frac{k3\pi}{2}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có:

      \(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x\cos \frac{\pi }{4} + \cos x\sin \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x.\frac{{\sqrt 2 }}{2} + \cos x.\frac{{\sqrt 2 }}{2}} \right) = \sin x + \cos x\)

b) Ta có:

\(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{\tan \frac{\pi }{4} - \tan x}}{{1 + \tan \frac{\pi }{4}\tan x}} = \frac{{1 - \tan x}}{{1 + \tan x}}\;\)

30 tháng 7 2019
https://i.imgur.com/Nzi64SE.jpg