Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1>0\\x^2+12>0\left(LD\forall x\right)\\-x+4>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x>1\\-x>-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{4}\\x< 4\end{matrix}\right.\)
Vậy \(S=\left\{x|\dfrac{1}{4}< x< 4\right\}\)
\(b,\left(2x-1\right)\left(5-2x\right)\left(1-x\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1< 0\\5-2x< 0\\1-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{1}{2}\\x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\)
Vậy \(S=\left\{x|1>x>\dfrac{5}{2}\right\}\)
\(bpt\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\4-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\4-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge1\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le1\\x>4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1\le x< 4\)
Vậy .......
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\4-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\4-x< 0\end{matrix}\right.\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge1\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le1\\x>4\end{matrix}\right.\end{matrix}\right.\)
Vậy....
\(a,\frac{x+5}{x^2-2x+1}>0\)
\(\Leftrightarrow\frac{x+5}{\left(x-1\right)^2}>0\)
\(\Leftrightarrow x>-5\)
\(b,x^2+x+1>0\)
\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) ( luôn đúng)
Lời giải:
Ta có: \(\frac{1}{x(x+1)}< 0\Leftrightarrow x(x+1)< 0\)
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x>0\\ x+1< 0\end{matrix}\right.\\ \left\{\begin{matrix} x< 0\\ x+1>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 0< x< -1(\text{vô lý})\\ 0> x> -1\end{matrix}\right.\)
\(\Rightarrow 0> x> -1\)
Cách khác:
\(\dfrac{1}{x\left(x+1\right)}< 0\Leftrightarrow x\left(x+1\right)< 0\)
Ta có:
\(x-\left(x+1\right)=x-x-1=-1< 0\)
\(\Rightarrow x< x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x>-1\end{matrix}\right.\)
\(\Rightarrow-1< 0< x\)
Ta có: \(\dfrac{x+2}{x-3}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2>0\\x-3< 0\end{matrix}\right.\Leftrightarrow-2< x< 3\)
Vậy: S={x|-2<x<3}
\(\left(2-x\right)\left(2x-5\right)\)
Th1 : \(\hept{\begin{cases}2-x>0\\2x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< \frac{5}{2}\end{cases}}}\)
Th2 : \(\hept{\begin{cases}2-x< 0\\2x-5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>\frac{5}{2}\end{cases}}}\)
| 2-4x | = 4x-2
<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)
<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)
=> \(S=\left\{\frac{1}{2};\infty\right\}\)
2x-7> 3(x-1)
<=>2x-7>3x-3
<=>2x-3x>-3+7
<=>-x>4
<=>x<4
=>S={x/x<4}
1-2x<4(3x-2)
<=>1-2x<12x-8
<=>-2x-12x<-8-1
<=>-14x<-9
<=>x>\(\frac{9}{14}\)
=>S={\(\frac{9}{14}\)}
-3x+2|-4 -x|> 0
<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)
<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)
=>S={x/x<3;x/x<\(\frac{1}{4}\)}
4x-1|x-2|< 0
<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)
<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)
=>S={x/x<\(\frac{-1}{3}\);x/x<1}
Ta có: \(-\dfrac{1}{x-2}\ge0\)
nên x-2<0
hay x<2
\(-\dfrac{1}{x-2}\ge0\Leftrightarrow x-2\le0\Leftrightarrow x\le2\)
Mà : $x ≠ 2 $
Do đó, bất phương trình vô nghiệm