Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\left(2x-1\right)x-\left(2x-1\right)\sqrt{x+3}-x^2+x+3=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-\sqrt{x+3}\right)-\left(x^2-x-3\right)=0\)
\(\Rightarrow\frac{\left(2x-1\right)\left(x^2-x-3\right)}{x+\sqrt{x+3}}-\left(x^2-x-3\right)=0\)
\(\Leftrightarrow\left(x^2-x-3\right)\left(\frac{2x-1}{x+\sqrt{x+3}}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x-3=0\\\frac{2x-1}{x+\sqrt{x+3}}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x-3=0\\x-1=\sqrt{x+3}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left(x-1\right)^2=x+3\end{matrix}\right.\)
Bạn tự giải nốt
\(\Leftrightarrow\sqrt{x^3+3x^2+2x}=x^2-x-4\)
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=\left(x^2-x-4\right)^2\)
\(\Leftrightarrow x^3+3x^2+2x=x^4-2x^3-7x^2+8x+16\)
\(\Leftrightarrow-\left(x^2-2\right)\left(x^2-3x-8\right)\)
<=>-(x2-2)=0 hoặc x2-3x-8=0
Đối chiếu với đk ta thấy \(x=-\frac{\sqrt{41}-3}{2};\frac{\sqrt{41}+3}{2}\)thỏa mãn