Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lập bảng xét dấu :
x | -2 | \(\frac{1}{2}\) | |||
x+2 | - | 0 | + | \(|\) | + |
2x-1 | - | \(|\) | - | 0 | + |
+) Nếu \(x\le-2\) thì \(|x+2|=-x-2\)
\(|2x-1|=1-2x\)
\(pt\Leftrightarrow\left(1-2x\right)-\left(-x-2\right)=5\)
\(\Leftrightarrow1-2x+x+2=5\)
\(\Leftrightarrow-x+3=5\)
\(\Leftrightarrow x=-2\left(tm\right)\)
Nếu \(-2< x< \frac{1}{2}\) thì \(|2x-1|=1-2x\)
\(|x+2|=x+2\)
\(pt\Leftrightarrow\left(1-2x\right)-\left(x+2\right)=5\)
\(\Leftrightarrow1-2x-x-2=5\)
\(\Leftrightarrow-3x-1=5\)
\(\Leftrightarrow-3x=6\)
\(\Leftrightarrow x=-2\) ( loại )
+) Nếu \(x\ge\frac{1}{2}\) thì \(|2x-1|=2x-1\)
\(|x+2|=x+2\)
\(pt\Leftrightarrow\left(2x-1\right)-\left(x+2\right)=5\)
\(\Leftrightarrow2x-1-x-2=5\)
\(\Leftrightarrow x-3=5\)
\(\Leftrightarrow x=8\left(tm\right)\)
Vậy ...
Trường hợp 1: Nếu x+2>/ thì x>/-2 nên ta có phương trình :
Suy ra : 2x+1-x+2=5
Suy ra : 2x-x=5-1-2
Suy ra : x=2(nhận)
Trường hợp 2: Nếu x+2<0 thì x<-2 nên ta có phương trình :
Suy ra : 2x-1-x-2=5
Suy ra : 2x-x=5+1+2
Suy ra : x= 8(loại)
S=(2)
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)
\(\Leftrightarrow-28x+37\ge12\)
\(\Leftrightarrow-28x\ge12-37\)
\(\Leftrightarrow-28x\ge-25\)
\(\Leftrightarrow x\le\dfrac{25}{28}\)
Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)
b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)
\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)
\(\Leftrightarrow-6x\ge30\)
\(\Leftrightarrow x\le-5\)
Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)
\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)
\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)
\(\Leftrightarrow-11x+37< 0\)
\(\Leftrightarrow-11x< -37\)
\(\Leftrightarrow x>\dfrac{37}{11}\)
vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)
\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)
\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)
\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)
\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)
\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)
\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)
\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)
\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)
\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)
TA CÓ:
\(a,\left(4x-1\right)\left(x-3\right)=\left(x-3\right)\left(5x+2\right)\Leftrightarrow\left(4x-1\right)\left(x-3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\left(x-3\right)\left(4x-1-5x-2\right)=0\Leftrightarrow\left(x-3\right)\left(-x-3\right)=0\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
\(b,\left(x+3\right)\left(x-5\right)+\left(x+3\right)\left(3x-4\right)=0\Leftrightarrow\left(x+3\right)\left(x-5+3x-4\right)=0\)
\(\left(x-3\right)\left(4x-9\right)=0\orbr{\begin{cases}x=3\\x=\frac{9}{4}\end{cases}}\)
\(c,\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\Leftrightarrow\left(1-x\right)\left(5x+3\right)=\left(7-3x\right)\left(1-x\right)\)
\(\left(1-x\right)\left(5x+3-7+3x\right)=0\Leftrightarrow\left(1-x\right)\left(8x-4\right)=0\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
BPT\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)\left(x-1\right)\left(x^2+x+1\right)\left(3-x\right)\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(3-x\right)\left(x+1\right)\ge0\) VÌ \(\left(\left(x^2+3x+9\right).\left(x^2+x+1\right)>0với\forall x\right)\)
\(\Leftrightarrow\left(x-3\right)^2.\left(1-x\right)\left(1+x\right)\ge0\)
\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge0\left(vì\left(x-3\right)^2\ge0voi\forall x\right)\)
\(\Leftrightarrow-1\le x\le1\)
1. Nửa chu vi mảnh vườn : 56 : 2 = 28m
Gọi chiều dài mảnh vườn là x ( m , x < 28 )
Chiều rộng = x - 8
Chiều dài + chiều rộng = 28m
=> Ta có phương trình : x + ( x - 8 ) = 28
<=> x + x - 8 = 28
<=> 2x - 8 = 28
<=> 2x = 36
<=> x = 18 ( tmđk )
=> Chiều dài = 18m ; chiều rộng = 18 - 8 = 10m
Diện tích mảnh vườn = 18 . 10 = 180m2
2. \(x\left(2x+5\right)-2x\left(x+1\right)\le12\)
<=> \(2x^2+5x-2x^2-2x\le12\)
<=> \(3x\le12\)
<=> \(3x\cdot\frac{1}{3}\le12\cdot\frac{1}{3}\)
<=> \(x\le4\)
Biểu diễn thì mình không biết vì mới học lớp 7
3. \(\frac{3}{x-3}=\frac{2}{x+1}\)( đkxđ : \(x\ne3;x\ne-1\))
<=> \(\frac{3\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}=\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\)
<=> \(3x+3=2x-6\)
<=> \(3x-2x=-6-3\)
<=> \(x=-9\)( tmđk )
Câu 3 bạn bổ sung nốt cho mình :
Vậy tập nghiệm của phương trình là S = { -9 }
Bảng xét dấu :