Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) x2 + 2x + 2 < 0
<=> x2 + 2x + 1 + 1 < 0
<=> ( x + 1 )2 + 1 < 0
<=> ( x + 1 )2 < -1 ( vô lí )
=> BPT vô nghiệm ( đpcm )
e) 4x2 - 4x + 5 ≤ 0
<=> 4x2 - 4x + 1 + 4 ≤ 0
<=> ( 2x - 1 )2 + 4 ≤ 0
<=> ( 2x - 1 )2 ≤ -4 ( vô lí )
=> BPT vô nghiệm ( đpcm )
f) x2 + x + 1 ≤ 0
<=> x2 + 2.1/2.x + 1/4 + 3/4 ≤ 0
<=> ( x + 1/2 )2 + 3/4 ≤ 0
<=> ( x + 1/2 )2 ≤ -3/4 ( vô lí )
=> BPT vô nghiệm ( đpcm )
a,Ta có :\(x^2+2x+2=\left(x^2+2x+1\right)+1\)
\(=\left(x+1\right)^2+1\)
Do \(\left(x+1\right)^2\ge0< =>\left(x+1\right)^2+1\ge1\)
=> BPT vô nghiệm
b,Ta có :\(4x^2-4x+5=\left[\left(2x\right)^2-2.2x+1\right]+4\)
\(=\left(2x-1\right)^2+4\)
Do \(\left(2x-1\right)^2\ge0< =>\left(2x-1\right)^2+4\ge4\)
=> BPT vô nghiệm
c,Ta có :\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x^2+2.\frac{1}{2}.x+\frac{1}{2}^2\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Do \(\left(x+\frac{1}{2}\right)^2\ge0< =>\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
=> BPT vô nghiệm
a) \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x-4\right)\left(x+4\right)\le10\)
\(\Leftrightarrow5x\left(x^2-6x+9\right)-5\left(x^3-3x^2+3x-1\right)+15\left(x^2-16\right)\le10\)
\(\Leftrightarrow5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-240\le10\)
\(\Leftrightarrow\left(5x^3-5x^3\right)-\left(30x^2-15x^2-15x^2\right)-\left(45x-15x\right)+5-240\le10\)
\(\Leftrightarrow30x-235\le10\)
\(\Leftrightarrow30x\le10+235\)
\(\Leftrightarrow30x\le245\)
\(\Leftrightarrow30x:30\le245:30\)
\(\Leftrightarrow x\le\dfrac{49}{6}\)
Vậy nghiệm của bất phương trình là: \(x\le\dfrac{49}{6}\)
b) \(\left(3x-2\right)\left(9x^2+6x+4\right)+27x\left(\dfrac{1}{3}-x\right)\left(\dfrac{1}{2}+x\right)\ge1\)
\(\Leftrightarrow27x^3-8+27x\left(\dfrac{1}{9}-x^2\right)\ge1\)
\(\Leftrightarrow27x^3-8+3x-27x^3\ge1\)
\(\Leftrightarrow\left(27x^3-27x^3\right)-8+3x\ge1\)
\(\Leftrightarrow-8+3x\ge1\)
\(\Leftrightarrow3x\ge1+8\)
\(\Leftrightarrow3x\ge9\)
\(\Leftrightarrow3x:3\ge9:3\)
\(\Leftrightarrow x\ge3\)
Vậy nghiệm của bất phương trình là \(x\ge3\)
a: =>5x(x^2-6x+9)-5(x^3-3x^2+3x-1)+15(x^2-16)<=10
=>5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-240<=10
=>30x-235<=10
=>30x<=245
=>x<=49/6
b: =>27x^3-8+27x(1/9-x^2)>=1
=>27x^3-8+3x-27x^3>=1
=>3x>=9
=>x>=3
x^2( - 2) - 9x = - 18
<=>-2x2-9x=-18
=>-2x2-9x+18=0
(-9)2-(-4(2.18))=225
\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=-\frac{9\pm\sqrt{225}}{4}\)
x1=-6;x2=\(\frac{3}{2}\)
\(a.\) \(x^2\left(-2\right)-9x=-18\)
\(\Leftrightarrow\) \(2x^2+9x=18\)
\(\Leftrightarrow\) \(2x^2+9x-18=0\)
\(\Leftrightarrow\) \(2x^2-3x+12x-18=0\)
\(\Leftrightarrow\) \(x\left(2x-3\right)+6\left(2x-3\right)=0\)
\(\Leftrightarrow\) \(\left(2x-3\right)\left(x+6\right)=0\)
\(\Leftrightarrow\) \(2x-3=0\) hoặc \(x+6=0\)
\(\Leftrightarrow\) \(x=\frac{3}{2}\) hoặc \(x=-6\)
Vậy, tập nghiệm của pt trên là \(S=\left\{-6;\frac{3}{2}\right\}\)
\(b.\)
Điều kiện để phương trình có nghĩa là \(x\ne\frac{1}{2}\)
Với điều kiện trên thì phương trình đã cho tương đương với:
\(\frac{7}{1-2x}\le0\) \(\Leftrightarrow\) \(1-2x\le0\) \(\Leftrightarrow\) \(1\le2x\) \(\Leftrightarrow\) \(x\ge\frac{1}{2}\)
Để thỏa mãn điều kiện xác định thì \(x>\frac{1}{2}\) (vì khi \(x=\frac{1}{2}\) thì mẫu thức bằng \(0\) nên phương trình không thể thực hiện được)
Kết luận: \(S=\left\{x\in R\text{|}x>\frac{1}{2}\right\}\)
a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\) \(\Leftrightarrow\) \(6\left(\dfrac{2-x}{3}-x-2\right)\le6\left(\dfrac{x-17}{2}\right)\) \(\Leftrightarrow\) 4-2x-6x-12\(\le\)3x-51 \(\Leftrightarrow\) -2x-6x-3x\(\le\)-51-4+12 \(\Leftrightarrow\) -11x\(\le\)-43 \(\Rightarrow\) x\(\ge\)43/11.
b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\) \(\Leftrightarrow\) \(12\left(\dfrac{2x+1}{3}+\dfrac{4-x}{4}\right)\le12\left(\dfrac{3x+1}{6}+\dfrac{4-x}{12}\right)\) \(\Leftrightarrow\) 8x+4+12-3x\(\le\)6x+2+4-x \(\Leftrightarrow\) 8x-3x-6x+x\(\le\)2+4-4-12 \(\Leftrightarrow\) 0x\(\le\)-10 (vô lí).
a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\)
\(\Leftrightarrow2\left(2-x\right)-6\left(x+2\right)\le3\left(x-17\right)\)
\(\Leftrightarrow4-2x-6x-12\le3x-51\)
\(\Leftrightarrow-11x\le-43\)
\(\Leftrightarrow x\ge\dfrac{43}{11}\)
Vậy S = {\(x\) | \(x\ge\dfrac{43}{11}\) }
b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)
\(\Leftrightarrow4\left(2x+1\right)-3\left(x-4\right)\le2\left(3x+1\right)-\left(x-4\right)\)
\(\Leftrightarrow8x+4-3x+12\le6x+2-x+4\)
\(\Leftrightarrow0x\le-10\) (vô lý)
Vậy \(S=\varnothing\)
`x(x-2)-(x+1)(x+2)<12`
`<=>x^2-2x-(x^2+3x+2)<12`
`<=>-5x-2<12`
`<=>-5x<14`
`<=>x> -14/5`
`=>S={x|x> -14/5}.`
`2/(5-2x)>=0(x ne 5/2)`
`<=>5-2x>0`
`<=>2x<5`
`=>x<5/2`
Bài 2:
Để \(\dfrac{2}{5-2x}\ge0\) thì \(5-2x>0\)
hay \(x< \dfrac{5}{2}\)
\(\dfrac{-x^2-x+16}{x^2-x-12}\le-1\)
\(\dfrac{-x^2-x+16}{x^2-x-12}\le-\dfrac{(x^2-x-12)}{x^2-x-12}\)
\(-x^2-x+16\le-\left(-x^2-x-12\right)\)
\(-x^2-x+16\le x^2+x+12\)
\(-x^2-x^2-x-x\le12-16\)
\(-2x^2-2x\le-4\)
\(-2x^2-2x+4\le0\)
\(-2\left(x^2+2x-4\right)\le0\)