Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bảng xét dấu :
\(x\) | \(\frac{1}{2}\) \(1\) |
\(1-x\) | \(-\) \(|\) \(-\) \(0\) \(+\) |
\(2x-1\) | \(-\) \(0\) \(+\) \(|\) \(+\) |
1. Nửa chu vi mảnh vườn : 56 : 2 = 28m
Gọi chiều dài mảnh vườn là x ( m , x < 28 )
Chiều rộng = x - 8
Chiều dài + chiều rộng = 28m
=> Ta có phương trình : x + ( x - 8 ) = 28
<=> x + x - 8 = 28
<=> 2x - 8 = 28
<=> 2x = 36
<=> x = 18 ( tmđk )
=> Chiều dài = 18m ; chiều rộng = 18 - 8 = 10m
Diện tích mảnh vườn = 18 . 10 = 180m2
2. \(x\left(2x+5\right)-2x\left(x+1\right)\le12\)
<=> \(2x^2+5x-2x^2-2x\le12\)
<=> \(3x\le12\)
<=> \(3x\cdot\frac{1}{3}\le12\cdot\frac{1}{3}\)
<=> \(x\le4\)
Biểu diễn thì mình không biết vì mới học lớp 7
3. \(\frac{3}{x-3}=\frac{2}{x+1}\)( đkxđ : \(x\ne3;x\ne-1\))
<=> \(\frac{3\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}=\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\)
<=> \(3x+3=2x-6\)
<=> \(3x-2x=-6-3\)
<=> \(x=-9\)( tmđk )
Câu 3 bạn bổ sung nốt cho mình :
Vậy tập nghiệm của phương trình là S = { -9 }
a, pt <=> x^2-x+5/x^2+x+3 - 1 < 0
<=> x^2-x+5-x^2-x-3/x^2+x+3 > 0
<=> 2-2x/x^2+x+3 > 0
<=> 2-2x > 0 ( vì x^2+x+3 > 0 )
<=> 2 > 2x
<=> x < 1
Vậy x < 1
Tk mk nha
B, =2x2-2x-14\(\le\)x2+1
=(2x2-x2)-2x-15\(\le\)0
=x2-2x-15\(\le\)0
=x2+3x-5x-15\(\le\)0
=x(x+3)-5(x+3)<=0
=(x+3)(x-5)<=0
Bạn giải ra ta được x=-3
x=5
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
b, \(\frac{3x-2}{5}\ge\frac{x+1,6}{2}\)
=> \(6x-4\ge5x+8\)
=> \(x-12\ge0\)
=> \(x\ge12\)
bpt 2: \(\frac{6-2x+5}{6}>\frac{3-x}{4}\)
=> \(\frac{11-2x}{6}>\frac{3-x}{4}\)
=> \(44-8x>18-6x\)
=> \(x< 13\)
Vậy để t/m cả 2 bpt thì : \(12\le x< 13\)