Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ hiểu mà bạn mấy cái dạng này mk gặp nhiều lần rồi
Ta có:\(\left(2x+1\right)\left(x-1\right)-2x^2+mx+m-2=0\)
Nhân ra thôi mà bạn:\(2x^2-2x+x-1-2x^2+mx+m-2=0\)
\(\Rightarrow-x-3+mx+m=0\)(Sao ko giống cái ở trên vậy hay là bạn giải sai kiểm tra lại đi rồi hãy nói)
bạn có cần phải kiêu căng vậy không? là sách giải bạn nhé :)))
\(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}=\dfrac{2}{-x^2+6x-8}\left(đk:x\ne2,x\ne4\right)\Leftrightarrow\dfrac{\left(x-1\right)\left(x-4\right)+\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=\dfrac{-2}{x^2-6x+8}\Leftrightarrow\dfrac{2x^2-4x-2}{x^2-6x+8}=\dfrac{-2}{x^2-6x+8}\Leftrightarrow2x^2-4x-2=-2\Leftrightarrow2x^2-4x=0\Leftrightarrow2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)\(\Leftrightarrow x=0\)( do x≠2)
2)Biện luận PT
`m(mx-1)=x+1`
`<=>m^2x-m=x+1`
`<=>x(m^2-1)=m+1`
PT vô nghiệm `<=>{(m^2-1=0),(m+1\ne0):}<=>m=1`
PT vô số nghiệm `<=>{(m^2-1=0),(m+1=0):}<=>m=-1`
PT có nghiệm duy nhất `m^2-1\ne0<=>m^2\ne1<=>m\ne+-1=>x=(m+1)/(m^2-1)=1/(m-1)`
a. \(\frac{mx+5}{10}\)+ \(\frac{x+m}{4}\)=\(\frac{m}{20}\)
\(\frac{2mx+10}{20}\)+ \(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)
2mx +10 + 5x +5m =m
x(2m+5)= -4m -10(1)
* 2m+5= 0 => m=-5/2
(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm
* 2m+5 \(\ne\)0=> m\(\ne\)-5/2
pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2
vậy với m=-5/2 phương trình đã cho vô số nghiệm
m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2
\(mx.\left(x+1\right)>mx.\left(x+m\right)+m^2-1\Leftrightarrow mx^2+mx>mx^2+m^2x+m^2-1\Leftrightarrow mx>m^2x+m^2-1\\ \).
\(\Leftrightarrow mx-m^2x-m^2+1>0\Leftrightarrow mx.\left(1-m\right)+\left(1-m\right).\left(1+m\right)>0\)
\(\Leftrightarrow\left(1-m\right).\left(mx+1+m\right)>0\)
+ Nếu \(m>1\Rightarrow1-m< 0\Rightarrow mx+1+m< 0\Leftrightarrow m.\left(x+1\right)< -1\)
Mà \(m>1\Rightarrow x+1< -\frac{1}{1}=-1\Leftrightarrow x< -2\)
+ Nếu m<1 thì làm tiếp