K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 11 2019

ĐKXĐ: \(x\ge1\)

Dễ dàng nhận ra \(\sqrt{x+3}+\sqrt{x-1}>0\) nên BPT tương đương:

\(x-3+\sqrt{\left(x-1\right)\left(x+3\right)}\ge\sqrt{x+3}+\sqrt{x-1}\)

Đặt \(\sqrt{x+3}+\sqrt{x-1}=a>0\)

\(\Rightarrow a^2=2x+2+2\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Rightarrow x+\sqrt{\left(x-1\right)\left(x+3\right)}=\frac{a^2-2}{2}\)

BPT trở thành:

\(\frac{a^2-2}{2}-3\ge a\Leftrightarrow a^2-2a-8\ge0\Rightarrow a\ge4\) (do \(a>0\))

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}\ge4\)

\(\Leftrightarrow2x+2+2\sqrt{x^2+2x-3}\ge16\)

\(\Leftrightarrow\sqrt{x^2+2x-3}\ge7-x\)

- Nếu \(x>7\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT hiển nhiên đúng

- Nếu \(1\le x\le7\)

\(\Leftrightarrow x^2+2x-3\ge x^2-14x+49\)

\(\Leftrightarrow x\ge\frac{13}{4}\) \(\Rightarrow\frac{13}{4}\le x\le7\)

Vậy nghiệm của BPT là \(x\ge\frac{13}{4}\)

15 tháng 11 2019

Cho mk hỏi \(\sqrt{x+3}+\sqrt{x-1}\) bn lấy ở đâu vậy ạ