K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2021

Đk: \(x\ge1\)

BPT \(\Leftrightarrow2\sqrt{x-1}-\sqrt{x+2}-\left(x-2\right)>0\)

Đặt \(a=\sqrt{x-1}\left(a\ge0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a^2+3=x+2\\a^2-1=x-2\end{matrix}\right.\)

Bpttt: \(2a-\sqrt{a^2+3}-\left(a^2-1\right)>0\)

\(\Leftrightarrow2a-a^2+1>\sqrt{a^2+3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a-a^2+1>0\\\left(2a-a^2+1\right)^2>a^2+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a-a^2+1>0\\a^4-4a^3+a^2+4a-2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1-\sqrt{2}\right)\left(1-\sqrt{2}-a\right)>0\\\left(a-1\right)\left(a+1\right)\left(a^2-4a+2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-\sqrt{2}< a< 1+\sqrt{2}\left(1\right)\\\left(a-1\right)\left(a+1\right)\left(a-2-\sqrt{2}\right)\left(a-2+\sqrt{2}\right)>0\left(2\right)\end{matrix}\right.\)

Kết hợp \(a\ge0\) và (1) 

\(\Rightarrow\left\{{}\begin{matrix}a+1>0\\a-2-\sqrt{2}< 1+\sqrt{2}-2-\sqrt{2}< 0\end{matrix}\right.\) \(\Rightarrow\left(a+1\right)\left(a-2-\sqrt{2}\right)< 0\)

Chia cả hai vế của (2) cho \(\Rightarrow\left(a+1\right)\left(a-2-\sqrt{2}\right)< 0\) ta được:

\(\left(a-1\right)\left(a-2+\sqrt{2}\right)< 0\)

\(\Leftrightarrow2-\sqrt{2}< a< 1\)

\(\Leftrightarrow2-\sqrt{2}< \sqrt{x-1}< 1\)

\(\Leftrightarrow7-4\sqrt{2}< x< 2\)

Vậy...(Lol, dài ha)

11 tháng 1 2022
Not biếtmdnhdhd
11 tháng 1 2022

Hummmm

NV
28 tháng 2 2021

Do \(x^6-x^3+x^2-x+1=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\) nên BPT tương đương:

\(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\ge0\)

\(\Leftrightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\le\sqrt{26}\) (1)

Ta có:

\(VT=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\) (2)

\(\Rightarrow\left(1\right);\left(2\right)\Rightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}=\sqrt{26}\)

Dấu "=" xảy ra khi và chỉ khi \(2\left(2x-1\right)=3\left(2-2x\right)\Leftrightarrow x=\dfrac{4}{5}\)

Vậy BPT có nghiệm duy nhất \(x=\dfrac{4}{5}\)

29 tháng 10 2017

bình phương lên mà tìm , đọc cái phần đầu thầy Quỳnh viết ấy

24 tháng 11 2019

Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{2x^2}=b\end{cases}}\)

\(\Rightarrow a+\sqrt[3]{x^3+1}< b+\sqrt[3]{b^3+1}\)

Dễ thấy hàm số dạng \(f\left(t\right)=t+\sqrt[3]{t^3+1}\)đồng biến trên R nên

\(\Rightarrow a< b\)

\(\Leftrightarrow\sqrt[3]{x+1}< \sqrt[3]{2x^2}\)

\(\Leftrightarrow2x^2-x-1>0\)

\(\Leftrightarrow\orbr{\begin{cases}x>1\\x< -\frac{1}{2}\end{cases}}\)

28 tháng 11 2019

Cách khác: Dùng liên hợp.

bpt <=> \(\left(\sqrt[3]{2x^2}-\sqrt[3]{x+1}\right)+\left(\sqrt[3]{2x^2+1}-\sqrt[3]{x+2}\right)>0\)

<=> \(\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2}\right)^2+\sqrt[3]{2x^2}.\sqrt[3]{x+1}+\left(\sqrt[3]{x+1}\right)^2}\)

\(+\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2+1}\right)^2+\sqrt[3]{2x^2+1}.\sqrt[3]{x+2}+\left(\sqrt[3]{x+2}\right)^2}>0\)

<=> \(2x^2-x-1>0\)

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

2:

a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)

\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)

=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)

A=2 thì a^2+2=1

=>a^2=-1(loại)

=>A>2 với mọi a

b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)

=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)

=>(căn a+căn b)(a-2*căn ab+b)>=0

=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)

 

31 tháng 7 2023

1

ĐK: `x>1`

PT trở thành:

\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)

Vậy PT vô nghiệm.

b

ĐK: \(x\ge2\)

Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))

=> \(x=t^2+2\)

PT trở thành: \(t^2+2-5t+2=0\)

\(\Leftrightarrow t^2-5t+4=0\)

nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)

\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)