K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

a) Bất phương trình đã cho tương đương với hệ sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (−1;0) ∪ (7/2; + ∞ )

b) Tương tự câu a), tập nghiệm là (1/10; 5)

c) Đặt t = log 2 x , ta có bất phương trình 2 t 3  + 5 t 2  + t – 2 ≥ 0 hay (t + 2)(2 t 2  + t − 1) ≥ 0 có nghiệm −2 ≤ t ≤ −1 hoặc t ≥ 1/2

Suy ra 1/4 ≤ x ≤ 1/2 hoặc x ≥ 2

Vậy tập nghiệm của bất phương trình đã cho là: [1/4; 1/2] ∪ [ 2 ; + ∞ )

d) Bất phương trình đã cho tương đương với hệ:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (ln(2/3); 0] ∪ [ln2; + ∞ )

19 tháng 6 2019

Đáp án A.

Phương trình

24 tháng 6 2017

Đáp án D

BPT <=> 23x + (m – 1)3x + m – 1 > 0

<=> 23x – 3x  – 1 + m(3x + 1) > 0

⇔ m > 3 x - 8 x + 1 3 x + 1 ; ∀ x ∈ ℝ (*).

Xét hàm số  f x = 3 x - 8 x + 1 3 x + 1 ; ∀ x ∈ ℝ , ta có

f ' x = 8 x ln   3 - ln   8 . 3 x - ln   8 3 x + 1 2 < 0 ; ∀ x ∈ ℝ .

Suy ra f(x) là hàm số nghịch biến trên  ℝ .

Mà  lim x → - ∞ f x = 1 , do đó

m i n x ∈ ℝ f x = lim x → - ∞ f x = 1 .

Vậy (*)  ⇔ m ≥ m i n x ∈ ℝ f x = 1 ⇒ m ≥ 1  là giá trị cần tìm.

18 tháng 7 2018

Đáp án C

23 tháng 6 2018

Chọn: B

19 tháng 6 2019

Đáp án : A.

31 tháng 3 2019

Đáp án A

23 tháng 10 2019

Đáp án : A.

Hướng dẫn: Giải bằng đồ thị.

3 tháng 6 2019