Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+3^8\cdot2^{10}\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\)
\(=-\dfrac{2}{6}=-\dfrac{1}{3}\)
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}=\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1-5\right)}=\dfrac{-2}{-4}=\dfrac{1}{2}\)
a: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
b: \(=\dfrac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}=\dfrac{5}{3}\)
a) \(\dfrac{27^3\cdot11+9^5\cdot5}{3^9\cdot2^4}\)
\(=\dfrac{3^9\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\)
\(=\dfrac{3^9\cdot\left(11+3\cdot5\right)}{3^9\cdot2^4}\)
\(=\dfrac{11+15}{16}\)
\(=\dfrac{26}{16}\)
\(=\dfrac{13}{8}\)
b) \(\dfrac{5^8+2^2\cdot25^4+2^3\cdot125^3-15^4\cdot5^4}{4^2\cdot625^2}\)
\(=\dfrac{5^8+2^2\cdot5^8+2^3\cdot5^9-3^4\cdot5^4\cdot5^4}{2^4\cdot5^8}\)
\(=\dfrac{5^8\cdot\left(1+2^2+2^3\cdot5-3^4\right)}{5^8\cdot2^4}\)
\(=\dfrac{1+4+40-81}{16}\)
\(=\dfrac{-36}{16}\)
\(=\dfrac{-9}{4}\)
c) \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\)
\(=\dfrac{-2}{6}\)
\(=-\dfrac{1}{3}\)
1: \(=5^{20}\cdot\left(\dfrac{1}{5}\right)^{20}+\left(\dfrac{-3}{4}\cdot\dfrac{-4}{3}\right)^8-1\)
=1+1-1=1
2: \(=\dfrac{15-8}{6}\cdot\dfrac{6}{7}+\left(-\dfrac{3}{2}\right)^2\)
=1+9/4
=13/4
3: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{3^8\cdot2^{10}+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{3^8\cdot2^{10}\cdot6}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
\(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+3^8\cdot2^8\cdot2^2\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}=\dfrac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{10}\cdot3^8\cdot6}\)
\(=\dfrac{-2}{6}=\dfrac{-1}{3}\)
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(=\dfrac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}\)
\(=\dfrac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)
\(A=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^8.3^{10}.5}\)
Tách ra tiếp mk đang buồn ngủ
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)
\(=\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
\(\dfrac{2^8\cdot2^{18}}{8^5\cdot4^6}=\dfrac{2^{26}}{2^{15}\cdot2^{12}}=\dfrac{2^{26}}{2^{27}}=\dfrac{1}{2}\)
\(\dfrac{2^8\cdot2^{18}}{8^5\cdot4^6}\\ =\dfrac{2^{8+18}}{\left(2^3\right)^5\cdot\left(2^2\right)^6}\\ =\dfrac{2^{26}}{2^{3\cdot5}\cdot2^{2\cdot6}}\\ =\dfrac{2^{26}}{2^{15}\cdot2^{12}}\\ =\dfrac{2^{26}}{2^{27}}\\ =\dfrac{1}{2}\)