Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=6x^4y^4-x^3y^3+\dfrac{1}{2}x^4y^2\\ b,=4x^3+5x^2-8x^2-10x+12x+15\\ =4x^3-3x^2+2x+15\\ 2,\\ a,=7\left(x^2-6x+9\right)=7\left(x-3\right)^2\\ b,=\left(x-y\right)^2-36=\left(x-y-6\right)\left(x-y+6\right)\\ 3,\\ \Leftrightarrow x\left(x^2-0,36\right)=0\\ \Leftrightarrow x\left(x-0,6\right)\left(x+0,6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,6\\x=-0,6\end{matrix}\right.\)
\(\left(3a-1\right)^2-2\left(3a-1\right)\left(2+b\right)+\left(2+b\right)^2\)
\(=\left(3a-1-b-2\right)^2\)
\(=\left(3a-b-3\right)^2\)
a) \(\dfrac{A}{x-2}=\dfrac{x^2+3x+2}{x^2-4}\)
\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{x+1}{x-2}\Leftrightarrow A=x+1\)
b) \(\dfrac{M}{x-1}=\dfrac{x^2+3x+2}{x+1}\)
\(\Leftrightarrow\dfrac{M}{x-1}=\dfrac{\left(x+1\right)\left(x+2\right)}{x+1}\)
\(\Leftrightarrow\dfrac{M}{x-1}=x+2\Leftrightarrow M=\left(x-1\right)\left(x+2\right)=x^2+x-2\)
Gọi số sản phẩm àm 2 ng công nhân được giao là x (x∈N*, sản phẩm)
Thời gian hoàn thành công việc của người thứ nhất là: \(\dfrac{x}{40}\left(h\right)\)
Thời gian hoàn thành công việc của ngươi thứ hai là: \(\dfrac{x}{50}\left(h\right)\)
Vì ng thứ nhất hoàn thành công việc chậm hơn người thứ hai 2 giờ nên ta có PT:
\(\dfrac{x}{40}-\dfrac{x}{50}=2\)
⇔\(50x-40x=4000\)
⇔\(10x=4000\)
⇔\(x=400\)
Vậy số sản phẩm mỗi công nhân được giao là 400 (sản phẩm)
Bài 2:
b: \(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Bài 5:
\(a,\dfrac{2}{2x-4}=\dfrac{2}{2\left(x-2\right)}=\dfrac{1}{x-2};\dfrac{3}{3x-6}=\dfrac{3}{3\left(x-2\right)}=\dfrac{1}{x-2}\\ b,\dfrac{1}{x+4}=\dfrac{2\left(x-4\right)}{2\left(x+4\right)\left(x-4\right)};\dfrac{1}{2x+8}=\dfrac{x-4}{2\left(x+4\right)\left(x-4\right)}\\ \dfrac{3}{x-4}=\dfrac{6\left(x+4\right)}{2\left(x-4\right)\left(x+4\right)}\\ c,\dfrac{1}{x^2-1}=\dfrac{1}{\left(x-1\right)\left(x+1\right)};\dfrac{2}{x-1}=\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ \dfrac{2}{x+1}=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\\ d,\dfrac{1}{2x}=\dfrac{x-2}{2x\left(x-2\right)};\dfrac{2}{x-2}=\dfrac{4x}{2x\left(x-2\right)};\dfrac{3}{2x\left(x-2\right)}\text{ giữ nguyên}\)
Bài 4:
\(a,\dfrac{x^2-4x+4}{x^2-2x}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}=\dfrac{\left(x-2\right)\left(x-1\right)}{x\left(x-1\right)}\\ \dfrac{x+1}{x^2-1}=\dfrac{1}{x-1}=\dfrac{x}{x\left(x-1\right)}\\ b,\dfrac{x^3-2^3}{x^2-4}=\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x+4}{x+2};\dfrac{3}{x+2}\text{ giữ nguyên}\)
a: \(\dfrac{x^3-3x^2}{x-3}=\dfrac{x^2\left(x-3\right)}{x-3}=x^2\)
b: \(\dfrac{2x^2+2x-4}{x+2}=\dfrac{2\left(x^2+x-2\right)}{x+2}=2\left(x-1\right)=2x-2\)
c: \(\dfrac{x^3+x^2-12}{x-2}=\dfrac{x^3-2x^2+3x^2-6x+6x-12}{x-2}=x^2+3x+6\)
d: \(\dfrac{-3x^3-9x+5x^2+15}{5-3x}=\dfrac{3x^3-5x^2+9x-15}{3x-5}\)
\(=\dfrac{x^2\left(3x-5\right)+3\left(3x-5\right)}{3x-5}=x^2+3\)
a) x(x + 4) - 3x - 12 = 0
x(x + 4) - 3(x + 4) = 0
(x + 4)(x - 3) = 0
x = -4 hoặc x = 3
b) 2x(x - 4) - x + 4 = 0
2x(x - 4) - (x - 4) = 0
(x - 4)(2x - 1) = 0
x = 4 hoặc x = 1/2
c) 5x(x - 3) - x + 3 = 0
5x(x - 3) - (x - 3) = 0
(x - 3)(5x - 1) = 0
x = 3 hoặc x = 1/5.
a) x(x + 4) - 3x - 12 = 0
x(x + 4) - 3(x + 4) = 0
(x + 4)(x - 3) = 0
x = -4 hoặc x = 3
b) 2x(x - 4) - x + 4 = 0
2x(x - 4) - (x - 4) = 0
(x - 4)(2x - 1) = 0
x = 4 hoặc x = 1/2
c) 5x(x - 3) - x + 3 = 0
5x(x - 3) - (x - 3) = 0
(x - 3)(5x - 1) = 0
x = 3 hoặc x = 1/5.
Bài 3:
a: \(\Leftrightarrow x^2+x-x^2=5\)
hay x=5
b: =>(x-2)(x+2)=0
=>x=2 hoặc x=-2