Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô-si:
\(\dfrac{x^2}{x+1}+\dfrac{x+1}{9}\ge2\sqrt{\dfrac{x^2\left(x+1\right)}{9\left(x+1\right)}}=\dfrac{2}{3}x\)
\(\dfrac{y^2}{y+1}+\dfrac{y+1}{9}\ge2\sqrt{\dfrac{y^2\left(y+1\right)}{9\left(y+1\right)}}=\dfrac{2}{3}y\)
Cộng vế:
\(\dfrac{x^2}{x+1}+\dfrac{y^2}{y+1}+\dfrac{x+y+2}{9}\ge\dfrac{2}{3}\left(x+y\right)\)
\(\Leftrightarrow P+\dfrac{1+2}{9}\ge\dfrac{2}{3}.1\)
\(\Rightarrow P\ge\dfrac{1}{3}\)
\(P_{min}=\dfrac{1}{3}\) khi \(x=y=\dfrac{1}{2}\)
Áp dụng BĐT Cô-si:
\(3\left(a^2+4\right)\ge3.4a=12a\)
\(b^4+b^4+b^4+81\ge4\sqrt[4]{81b^{12}}=12b^3\)
Cộng vế:
\(3\left(a^2+b^4\right)+93\ge12\left(a+b^3\right)=384\)
\(\Rightarrow a^2+b^4\ge85\)
\(\Rightarrow P\ge85-19=66\)
\(P_{min}=66\) khi \(\left(a;b\right)=\left(2;3\right)\)
\(\widehat{AEI}=\widehat{BEI}\) (chắn 2 cung bằng nhau AC và BC)
\(\Rightarrow\) theo định lý phân giác: \(\dfrac{EB}{AE}=\dfrac{IB}{IA}=\dfrac{\dfrac{R}{2}}{R+\dfrac{R}{2}}=\dfrac{1}{3}\)
Mặt khác 2 tam giác vuông AOH và AEB đồng dạng (chung góc A)
\(\Rightarrow\dfrac{OH}{OA}=\dfrac{EB}{AE}=\dfrac{1}{3}\)
Lại có \(OA=OD\Rightarrow OH=\dfrac{1}{3}OD\Rightarrow DH=\dfrac{2}{3}OD\)
O lại là trung điểm AB \(\Rightarrow H\) là trọng tâm ABD
\(\Rightarrow AH\) đi qua trung điểm BD hay K là trung điểm BD
Mà tam giác OBD vuông cân tại O \(\Rightarrow\) OK là trung tuyến đồng thời là đường cao
\(\Rightarrow OK\perp BD\)
Điều kiện:`a>=0,a ne 1` $\\$ `E=(1+(a-sqrta)/(sqrta-1))(1-(a+sqrta)/(1+sqrta))`
`=(1+(sqrta(sqrta-1))/(sqrta-1))(1-(sqrta(sqrta+1))/(sqrta+1))`
`=(1+sqrta)(1-sqrta)`
`=1-a`
\(E=\left(1+\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(1-\dfrac{a+\sqrt{a}}{1+\sqrt{a}}\right)\)
ĐK: a ≥ 0; a khác 1
\(=\left[1+\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right]\left[1-\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right]\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)
\(36,\dfrac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{\left(6+2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}=\dfrac{6\sqrt{3}-6\sqrt{2}+6\sqrt{2}-4\sqrt{3}}{\sqrt{3^2}-\sqrt{2^2}}=\dfrac{2\sqrt{3}}{3-2}=2\sqrt{3}\)
\(35,\dfrac{5\sqrt{6}+6\sqrt{5}}{\sqrt{5}+\sqrt{6}}=\dfrac{\sqrt{6}.\sqrt{5}\left(\sqrt{5}+\sqrt{6}\right)}{\sqrt{5}+\sqrt{6}}=\sqrt{30}\)
\(34,\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}\\ =\dfrac{\left(6\sqrt{2}-4\right)\left(\sqrt{2}+3\right)}{\left(\sqrt{2}-3\right)\left(\sqrt{2}+3\right)}\\ =\dfrac{6.2+3.6\sqrt{2}-4\sqrt{2}-12}{\sqrt{2^2}-3^2}\\ =\dfrac{12+18\sqrt{2}-4\sqrt{2}-12}{2-9}\\ =-2\sqrt{2}\)
\(33,\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{3}.\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=\sqrt{6}\)
Câu 4:
D và F cùng nhìn AC dưới 1 góc vuông nên tứ giác ACDF nội tiếp
\(\Rightarrow\widehat{ADF}=\widehat{ACF}\) (cùng chắn AF)
Tương tự, ABDE nội tiếp \(\Rightarrow\widehat{ABE}=\widehat{ADE}\) (cùng chắn AE)
Lại có \(\widehat{ABE}=\widehat{ACF}\) (cùng phụ góc \(\widehat{A}\))
\(\Rightarrow\widehat{ADE}=\widehat{ADF}\) hay AD là phân giác góc \(\widehat{FDE}\)
./
Hoàn toàn tương tự, ta cũng có CF là phân giác \(\widehat{DFE}\Rightarrow\widehat{BFD}=\widehat{AFE}\)
Mà \(\widehat{AFE}=\widehat{BFK}\Rightarrow\widehat{BFK}=\widehat{BFD}\)
\(\Rightarrow\dfrac{BK}{BD}=\dfrac{FK}{FD}\) theo định lý phân giác
Đồng thời \(\dfrac{CK}{CD}=\dfrac{FK}{FD}\) (CF là phân giác ngoài góc \(\widehat{DFK}\))
\(\Rightarrow\dfrac{BK}{BD}=\dfrac{CK}{CD}\Rightarrow\dfrac{BK}{CK}=\dfrac{BD}{CD}\)
Qua B kẻ đường thẳng song song AC cắt AK và AD tại P và Q
Theo Talet: \(\dfrac{BK}{CK}=\dfrac{BP}{AC}\) đồng thời \(\dfrac{BD}{DC}=\dfrac{BQ}{AC}\)
\(\Rightarrow\dfrac{BP}{AC}=\dfrac{BQ}{AC}\Rightarrow BP=BQ\)
Mặt khác BP song song MF (cùng song song AC)
\(\Rightarrow\dfrac{MF}{BP}=\dfrac{AF}{AB}\) ; \(\dfrac{NF}{BQ}=\dfrac{AF}{AB}\) (Talet)
\(\Rightarrow\dfrac{MF}{BP}=\dfrac{NF}{BQ}\Rightarrow MF=NF\)
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
Bài 2:
a: =>x+9=49
hay x=40