K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn chụp lại đề nha bạn

14 tháng 11 2021

Nhỏ quá

14 tháng 11 2021

cái dưới á ...

 

NV
5 tháng 1

Áp dụng BĐT Cô-si:

\(\dfrac{x^2}{x+1}+\dfrac{x+1}{9}\ge2\sqrt{\dfrac{x^2\left(x+1\right)}{9\left(x+1\right)}}=\dfrac{2}{3}x\)

\(\dfrac{y^2}{y+1}+\dfrac{y+1}{9}\ge2\sqrt{\dfrac{y^2\left(y+1\right)}{9\left(y+1\right)}}=\dfrac{2}{3}y\)

Cộng vế:

\(\dfrac{x^2}{x+1}+\dfrac{y^2}{y+1}+\dfrac{x+y+2}{9}\ge\dfrac{2}{3}\left(x+y\right)\)

\(\Leftrightarrow P+\dfrac{1+2}{9}\ge\dfrac{2}{3}.1\)

\(\Rightarrow P\ge\dfrac{1}{3}\)

\(P_{min}=\dfrac{1}{3}\) khi \(x=y=\dfrac{1}{2}\)

NV
5 tháng 1

Áp dụng BĐT Cô-si:

\(3\left(a^2+4\right)\ge3.4a=12a\)

\(b^4+b^4+b^4+81\ge4\sqrt[4]{81b^{12}}=12b^3\)

Cộng vế:

\(3\left(a^2+b^4\right)+93\ge12\left(a+b^3\right)=384\)

\(\Rightarrow a^2+b^4\ge85\)

\(\Rightarrow P\ge85-19=66\)

\(P_{min}=66\) khi \(\left(a;b\right)=\left(2;3\right)\)

NV
12 tháng 3 2021

\(\widehat{AEI}=\widehat{BEI}\) (chắn 2 cung bằng nhau AC và BC)

\(\Rightarrow\) theo định lý phân giác: \(\dfrac{EB}{AE}=\dfrac{IB}{IA}=\dfrac{\dfrac{R}{2}}{R+\dfrac{R}{2}}=\dfrac{1}{3}\)

Mặt khác 2 tam giác vuông AOH và AEB đồng dạng (chung góc A)

\(\Rightarrow\dfrac{OH}{OA}=\dfrac{EB}{AE}=\dfrac{1}{3}\)

Lại có \(OA=OD\Rightarrow OH=\dfrac{1}{3}OD\Rightarrow DH=\dfrac{2}{3}OD\)

O lại là trung điểm AB \(\Rightarrow H\) là trọng tâm ABD

\(\Rightarrow AH\) đi qua trung điểm BD hay K là trung điểm BD

Mà tam giác OBD vuông cân tại O \(\Rightarrow\) OK là trung tuyến đồng thời là đường cao

\(\Rightarrow OK\perp BD\)

NV
12 tháng 3 2021

Hình vẽ:

undefined

26 tháng 6 2021

Điều kiện:`a>=0,a ne 1` $\\$ `E=(1+(a-sqrta)/(sqrta-1))(1-(a+sqrta)/(1+sqrta))`

`=(1+(sqrta(sqrta-1))/(sqrta-1))(1-(sqrta(sqrta+1))/(sqrta+1))`

`=(1+sqrta)(1-sqrta)`

`=1-a`

26 tháng 6 2021

 

\(E=\left(1+\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(1-\dfrac{a+\sqrt{a}}{1+\sqrt{a}}\right)\)

ĐK: a ≥ 0; a khác 1

\(=\left[1+\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right]\left[1-\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right]\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

27 tháng 6 2023

\(36,\dfrac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{\left(6+2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}=\dfrac{6\sqrt{3}-6\sqrt{2}+6\sqrt{2}-4\sqrt{3}}{\sqrt{3^2}-\sqrt{2^2}}=\dfrac{2\sqrt{3}}{3-2}=2\sqrt{3}\)

\(35,\dfrac{5\sqrt{6}+6\sqrt{5}}{\sqrt{5}+\sqrt{6}}=\dfrac{\sqrt{6}.\sqrt{5}\left(\sqrt{5}+\sqrt{6}\right)}{\sqrt{5}+\sqrt{6}}=\sqrt{30}\)

\(34,\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}\\ =\dfrac{\left(6\sqrt{2}-4\right)\left(\sqrt{2}+3\right)}{\left(\sqrt{2}-3\right)\left(\sqrt{2}+3\right)}\\ =\dfrac{6.2+3.6\sqrt{2}-4\sqrt{2}-12}{\sqrt{2^2}-3^2}\\ =\dfrac{12+18\sqrt{2}-4\sqrt{2}-12}{2-9}\\ =-2\sqrt{2}\)

\(33,\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{3}.\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=\sqrt{6}\)

NV
22 tháng 2 2021

Câu 4:

D và F cùng nhìn AC dưới 1 góc vuông nên tứ giác ACDF nội tiếp

\(\Rightarrow\widehat{ADF}=\widehat{ACF}\) (cùng chắn AF)

Tương tự, ABDE nội tiếp \(\Rightarrow\widehat{ABE}=\widehat{ADE}\) (cùng chắn AE)

Lại có \(\widehat{ABE}=\widehat{ACF}\) (cùng phụ góc \(\widehat{A}\))

\(\Rightarrow\widehat{ADE}=\widehat{ADF}\) hay AD là phân giác góc \(\widehat{FDE}\)

./

Hoàn toàn tương tự, ta cũng có CF là phân giác \(\widehat{DFE}\Rightarrow\widehat{BFD}=\widehat{AFE}\)

Mà \(\widehat{AFE}=\widehat{BFK}\Rightarrow\widehat{BFK}=\widehat{BFD}\)

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{FK}{FD}\) theo định lý phân giác

Đồng thời \(\dfrac{CK}{CD}=\dfrac{FK}{FD}\) (CF là phân giác ngoài góc \(\widehat{DFK}\))

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{CK}{CD}\Rightarrow\dfrac{BK}{CK}=\dfrac{BD}{CD}\)

Qua B kẻ đường thẳng song song AC cắt AK và AD tại P và Q

Theo Talet: \(\dfrac{BK}{CK}=\dfrac{BP}{AC}\) đồng thời \(\dfrac{BD}{DC}=\dfrac{BQ}{AC}\)

\(\Rightarrow\dfrac{BP}{AC}=\dfrac{BQ}{AC}\Rightarrow BP=BQ\)

Mặt khác BP song song MF (cùng song song AC)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{AF}{AB}\) ; \(\dfrac{NF}{BQ}=\dfrac{AF}{AB}\) (Talet)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{NF}{BQ}\Rightarrow MF=NF\)

NV
22 tháng 2 2021

Hình vẽ câu 4:

undefined

19 tháng 12 2021

a: Xét tứ giác OBAC có 

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp