K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9\)

\(\Leftrightarrow\)\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+\frac{8x}{8}\right)+9\)

\(\Leftrightarrow\)\(P=\frac{x^2}{x+4}.\left(\frac{\left(x+4\right)^2}{x}\right)+9\)(Không viết ngoặc vuông được nên để ngoặc tròn luôn, đừng ném đá, em không cần đá xây nhà)

\(\Leftrightarrow P=x\left(x+4\right)+9\)

\(\Leftrightarrow P=x^2+4x+9\)

\(\Leftrightarrow P=\left(x^2+4x+4\right)+5\)

\(\Leftrightarrow P=\left(x+2\right)^2+5\)

\(\Rightarrow Min_P=5\) tại \(x=-2\)

22 tháng 2 2017

5, mới test casio, để giải tự luận sau

14 tháng 2 2017

Dễ mà bạn:\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9\)

\(P=\frac{x^2}{x+4}\left(\frac{x^2+8x+16}{x}\right)+9\)

\(P=\frac{x^2}{x+4}.\frac{\left(x+4\right)^2}{x}+9\)

\(P=x\left(x+4\right)+9=x^2+4x+9\)

\(P=x^2+4x+4+5=\left(x+2\right)^2+5\ge5\)

Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)

Vậy minP=5 khi x=-2

14 tháng 2 2017

ĐK: x khác 0 và x khác -4

\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9=\frac{x^2}{x+4}\frac{\left(x+4\right)^2}{x}+9=x\left(x+4\right)+9=x^2+4x+4+5=\left(x+2\right)^2+5\ge5\)

GTNN P=5 khi x=-2

13 tháng 1 2021

Ta có: \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)

Các số dương : x và \(\frac{144}{x}\) có tích k đổi nên tổng nhỏ nhất và chỉ khi  \(x=\frac{144}{x}\)=> x=12

Vậy Min A = 49 khi và chỉ khi x=12

13 tháng 1 2021

\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+25+\frac{144}{x}\)

Vì \(x>0\)\(\Rightarrow\) Áp dụng bđt Cô si ta có:

\(x+\frac{144}{x}\ge2\sqrt{x.\frac{144}{x}}=2.\sqrt{144}=2.12=24\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{144}{x}\)\(\Leftrightarrow x^2=144\)\(\Leftrightarrow x=12\)( do \(x>0\))

\(\Rightarrow A\ge25+24=49\)

Vậy \(minA=49\)\(\Leftrightarrow x=12\)

13 tháng 12 2019

a

\(ĐKXĐ:x\in R\)

\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)

\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4-x^2+1\right)\)

\(=\frac{\left(x^2-1\right)\left(x^4-x^2+1\right)}{x^4-x^2+1}-\frac{x^4-x^2+1}{x^2+1}\)

\(=x^2-1-\frac{x^4-x^2+1}{x^2+1}\)

\(=-1+\frac{x^4+x^2-x^4+x^2+1}{x^2+1}\)

\(=\frac{2x^2+1}{x^2+1}-1=\frac{2x^2+1-x^2-1}{x^2+1}=\frac{x^2}{x^2+1}\)

b

Xét \(x>0\Rightarrow M>0\)

Xét \(x=0\Rightarrow M=0\)

Xét \(x< 0\Rightarrow M>0\)

Vậy \(M_{min}=0\) tại \(x=0\)