Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(y\ne\left\{-\frac{1}{3};\frac{1}{3};3\right\}\)
a. Ta có \(\frac{1}{3y^2-10y+3}=\frac{6y}{9y^2-1}+\frac{2}{1-3y}\)
\(\frac{\Leftrightarrow1}{\left(y-3\right)\left(3y-1\right)}=\frac{6y}{\left(3y+1\right)\left(3y-1\right)}-\frac{2}{3y-1}\)
\(\Leftrightarrow\frac{3y+1}{\left(3y+1\right)\left(3y-1\right)\left(y-3\right)}=\frac{6y\left(y-3\right)-2\left(y-3\right)\left(3y+1\right)}{\left(3y+1\right)\left(3y-1\right)\left(y-3\right)}\)
\(\Leftrightarrow3y+1=-2y+6\Leftrightarrow5y=5\Rightarrow y=1\)
Vậy \(y=1\)
b. Pt \(\Leftrightarrow x-\frac{\frac{x-3}{4}}{2}=3-\frac{\frac{x-3}{6}}{2}\Leftrightarrow x-\frac{x-3}{8}=3-\frac{x-3}{12}\)
\(\Leftrightarrow\left(x-3\right)-\frac{x-3}{8}-\frac{x-3}{12}=0\Leftrightarrow\frac{19}{24}\left(x-3\right)=0\Leftrightarrow x=3\)
Vậy \(x=3\)
\(A=x^2+10x-37\)
\(=\left(x+5\right)^2-62\)
Có \(\left(x+5\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(x+5\right)^2-62\ge-62\forall x\in R\)
Dấu = xảy ra \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
Vậy A đạt GTNN là -62 tại x=-5
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
Với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y các phân thức có nghĩa. Ta có
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)\(=\)\(\frac{5x\left(2x-3y\right)^2.y\left(2x^2+5xy+3y^2\right)}{3y\left(4x^2-9y^2\right).2x\left(x+y\right).\left(2x-3y\right)}\)
\(=\)\(\frac{10xy\left(2x-3y\right)^2.\left(2x^2+2xy+3xy+3y^2\right)}{6xy\left(2x-3y\right).\left(2x+3y\right)\left(x+y\right)\left(2x-3y\right)}\)\(=\)\(\frac{10xy\left(2x-3y\right)^2\left(x+y\right).\left(2x+3y\right)}{6xy\left(2x-3y\right)^2.\left(2x+3y\right).\left(x+y\right)}\)
\(=\)\(\frac{5}{3}\)
ĐK \(\hept{\begin{cases}xy\ne0\\2x-3y\ne0,2x+3y\ne0\\x\ne-y\end{cases}}\)
\(=\frac{5x\left(2x-3y\right)^2}{3y\left(2x+3y\right)\left(2x-3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{xy\left(2x+3y\right)+y^2\left(2x+3y\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{\left(2x+3y\right)\left(xy+y^2\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}.\frac{y\left(x+y\right)\left(2x+3y\right)}{2x\left(x+y\right)\left(2x-3y\right)}=\frac{5}{6}\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m
Bài 2:
a) \(x+x^2=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(0x-3=0\)
\(\Leftrightarrow0x=3\)
\(\Rightarrow vonghiem\)
c) \(3y=0\)
\(\Leftrightarrow y=0\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{8x}{x^2-1}\right):\left(\frac{2x-2x^2-6}{x^2-1}-\frac{2}{x-1}\right)\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{8x}{\left(x+1\right)\left(x-1\right)}\right):\left(\frac{2x-2x^2-6}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1-8x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2x-2x^2-6-2x-2}{\left(x+1\right)\left(x-1\right)}\right)\)
\(A=\left(\frac{4x-8x}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)\left(x+1\right)}{-2x^2-8}\)
..........
\(\frac{x+32}{2008}+\frac{x+31}{2009}+\frac{x+29}{2011}+\frac{x+28}{2012}+\frac{x+2056}{4}=0\) \(=0\)
\(\Leftrightarrow\)\(\frac{x+32}{2008}+1+\frac{x+31}{2009}+1+\frac{x+29}{2011}+1\)\(+\frac{x+28}{2012}+1+\frac{x+2056}{4}-4\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+32}{2008}+\frac{2008}{2008}+\frac{x+31}{2009}+\frac{2009}{2009}+\)\(\frac{x+29}{2011}+\frac{2011}{2011}+\frac{x+28}{2012}+\frac{2012}{2012}+\)\(\frac{x+2056}{4}-\frac{16}{4}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+32+2008}{2008}+\frac{x+31+2009}{2009}\)\(+\frac{x+29+2011}{2011}+\frac{x+28+2012}{2012}\)\(+\frac{x+2056-16}{4}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+2040}{2008}+\frac{x+2040}{2009}+\frac{x+2040}{2011}\)\(+\frac{x+2040}{2012}+\frac{x+2040}{4}=0\)
\(\Leftrightarrow\)\(\left(x+2040\right).\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+2040=0\\\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}=0\end{cases}}\)(vô lí)
\(\Leftrightarrow\)\(x=-2040\)
Vậy phương trình có nghiệm là : x = -2040
\(A=\left(x+5\right)^2-62\ge-62\)
\(B=\left(\frac{1}{2}x^2+1-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
\(C=\left(x-3y+2\right)^2+\left(x-5\right)^2-9\ge-9\)
\(D=\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\)
\(A=-\left(x-3\right)^2+12\le12\)
\(B=-2x^2-5x+3=-2\left(x+\frac{5}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
\(C=\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)
Tự tìm Đkxđ nha.
1/(3y^2 - 10y +3) = 6y/(9y^2 - 1) + 2/(1 - 3y)
=>1/(3y^2 -9y -y +3)=6y/(3y- 1)(3y+ 1)- 2(3y+ 1)/(3y - 1)(3y+ 1)
=>1/(y- 3)(3y -1)=-1/(3y -1)(3y +1)
=>(3y+ 1)/(y- 3)(3y -1)(3y+ 1)=(y -3)/(3y- 1)(3y +1)
=>3y+ 1= y- 3
Đến đây tự làm nha
a)ĐKXĐ:\(\hept{\begin{cases}y\ne3\\y\ne\frac{1}{3}\\y\ne-\frac{1}{3}\end{cases}}\)
\(\frac{1}{3y^2-10y+3}=\frac{6y}{9y^2-1}+\frac{2}{1-3y}\)
\(\Leftrightarrow\frac{1}{\left(y-3\right)\left(3y-1\right)}=\frac{6y}{\left(3y-1\right)\left(3y+1\right)}-\frac{2}{3y-1}\)
\(\Leftrightarrow\frac{3y+1}{\left(y-3\right)\left(3y-1\right)\left(3y+1\right)}=\frac{6y\left(y-3\right)}{\left(3y-1\right)\left(3y+1\right)\left(y-3\right)}-\frac{2\left(3y+1\right)\left(y-3\right)}{\left(3y-1\right)\left(3y+1\right)\left(y-3\right)}\)
\(\Rightarrow6y^2-18y-2\left(3y^2-9y+y-3\right)-3y-1=0\)
\(\Leftrightarrow6y^2-18y-6y^2+18y-2y+6-3y-1=0\)
\(\Leftrightarrow5-5y=0\)
\(\Leftrightarrow5y=5\Leftrightarrow y=1\)(t/m ĐKXĐ)
Vậy....