Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)
\(=-\left(x+1\right)^2+4\le4\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN là 4 khi x = -1
b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)
\(=-\left(2x-1\right)^2-2\le-2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN B là -2 khi x = 1/2
c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)
\(=-\left(x-1\right)^2-14\le-14\)
Vâỵ GTLN C là -14 khi x = 1
Bài 8 :
b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 3
Vậy GTNN B là 2 khi x = 3
c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy ...
c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)
Dấu ''='' xảy ra khi x = 6
Vậy ...
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
a) \(x^2\)\(+3x+7\)
=\(x^2\)\(+2.x.\frac{3}{2}\)\(+\frac{9}{4}\)\(+\frac{19}{4}\)
=\(\left(x+\frac{3}{2}\right)^2\)\(+\frac{19}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\)\(\ge0\)
Nên \(\left(x+\frac{3}{2}\right)^2\)\(+\frac{19}{4}\)\(\ge\frac{19}{4}\)
Dấu "=" xảy ra khi:
\(x+\frac{3}{2}\)\(=0\)
\(\Rightarrow x=-\frac{3}{2}\)
Vậy GTNN của \(x^2\)\(+3x+7\) là \(\frac{19}{4}\) khi \(x=-\frac{3}{2}\)
b) \(-9x^2+12x-15\)
=\(-\left(9x^2-12x+15\right)\)
=\(-\left(\left(3x\right)^2-2.3x.2+4+11\right)\)
=\(-\left(\left(3x-2\right)^2+11\right)\)
=\(-\left(3x-2\right)^2-11\)
Vì \(\left(3x-2\right)^2\)\(\ge0\)
Nên \(-\left(3x-2\right)^2-11\le-11\)
Dấu "=" xảy ra khi:
\(3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
Vậy GTLN của \(-9x^2+12x-15\) là \(-11\) khì \(x=\frac{2}{3}\)
c) \(11-10x-x^2\)
=\(-\left(x^2+10x-11\right)\)
=\(-\left(x^2+2.x.5+25-36\right)\)
=\(-\left(\left(x+5\right)^2-36\right)\)
=\(-\left(x+5\right)^2+36\)
Vì \(\left(x+5\right)^2\ge0\)
Nên \(-\left(x+5\right)^2+36\le36\)
Dấu "=" xảy ra khi:
\(x+5=0\)
\(\Rightarrow x=-5\)
Vậy GTLN \(11-10x-x^2\) là \(36\) khi \(x=-5\)
d)\(x^4+x^2+2\)
=\(\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
=\(\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}\)
Vì \(\left(x^2+\frac{1}{2}\right)^2\ge0\)
Nên \(\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Dấu "=" xảy ra khi:
\(x^2+\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{\sqrt{2}}\)
Vậy GTNN của \(x^4+x^2+2\) là \(\frac{7}{4}\) khi \(x=\frac{1}{\sqrt{2}}\)
a) \(x^2+3x+7=x^2+2.1,5x+1,5^2+4,75=\left(x+1,5\right)^2+4,75\ge4,75\)
Đẳng thức xảy ra khi : \(x+1,5=0\Rightarrow x=-1,5\)
Vậy giá trị nhỏ nhất của x2 + 3x + 7 là 4,75 khi x = -1,5
b) \(-9x^2+12x-15=-\left(9x^2-12x+15\right)=-\left[\left(3x\right)^2-2.2.3x+2^2+11\right]\)
\(=-\left[\left(3x-2\right)^2+11\right]=-\left(3x-2\right)^2-11\le-11\)
Đẳng thức xảy ra khi : \(3x-2=0\Rightarrow x=\frac{2}{3}\)
Vậy giá trị lớn nhất của -9x2 +12x - 15 là -11 khi \(x=\frac{2}{3}\)
c) \(11-10x-x^2=-x^2-10x+11=-\left(x^2+10x-11\right)=-\left(x^2+2.5x+5^2-36\right)\)
\(=-\left[\left(x+5\right)^2-36\right]=-\left(x+5\right)^2+36\le36\)
Đẳng thức xảy ra khi : \(x+5=0\Rightarrow x=-5\)
Vậy giá trị lớn nhất của 11 - 10x -x2 là 36 khi x = -5.
a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)
\(=x^2-4x+3+11\)
\(=x^2-4x+4+8\)
\(=\left(x-2\right)^2+8\ge8\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(B=-4x^2+4x+5\)
\(=-\left(4x^2-4x+1-6\right)\)
\(=-\left(2x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
Ta có: (x-1).(x-3)+11
=(x-2+1).(x-2-1)+11
=(x-2)2-1+11
=(x-2)2+10
Vì (x-2)2\(\ge\)0
=>(x-2)2+10\(\ge\)10
=>GTNN=10
Khi x=15;11;7 hoac x=0.
Dung thi nho k cho minh de ung ho minh nhe!Thanks!!!