Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Ta có: \(\left|5x-2\right|\ge0\forall x\)
\(\left|3y+12\right|\ge0\forall y\)
Do đó: \(\left|5x-2\right|+\left|3y+12\right|\ge0\forall x,y\)
\(\Leftrightarrow-\left|5x-2\right|-\left|3y+12\right|\le0\forall x,y\)
\(\Leftrightarrow-\left|5x-2\right|-\left|3y+12\right|+4\le4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}5x-2=0\\3y+12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=2\\3y=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
bạn làm bài nào đây ạ? 4 - |5x-2| - |3y + 12| mà đâu phải −|5x−2|−|3y+12|+4
a, Ta có : \(\left|2x-1,5\right|\ge0\) với mọi x
\(\Rightarrow5,5-\left|2x-1,5\right|\le5,5\)với mọi x
\(\Rightarrow MaxD=5,5\)
ta có /5x-2/ luôn lớn hơn hoặc bằng 0 với mọi x
/3y+12/luôn lớn hơn hoặc bằng 0 với mọi y
Do đó giá trị nhỏ nhất của M luôn bé hơn 4(tớ nghĩ dễ bị sai đề phải là 2 dấu cộng hoặc 2 chữ x chứ
M=4- [ 5x-2] - [3y+12]
Ta có:[5x-2]>(hoặc bằng) 0
-[5x-2]<(hoặc bằng) 0
4-[5x-2]<(hoặc bằng) 0+4
4-[5x-2]<(hoặc bằng) 4
Dấu "=" xảy ra khi 5x-2=0
5x=0+2
5x=2
x=2:5
x=0,4
Ta có:[3y+12]>(hoặc bằng) 0
-[3y+12]<(hoặc bằng) 0
4-[3y+12]<(hoặc bằng) 0+4
4-[3y+12]<(hoặc bằng) 4
Dấu "=" xảy ra khi 3y+12=0
3y=0+12
3y=12
y=12:3
y=4
Ta có M=4-[5x-2]-[3y+12]
Suy ra M=4-[5.0,4-2]-[3.4+12]=-20
Vậy m=-20 khi x=0,4 ; y=4