Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)
Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)
b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)
Thấy : \(x^2+4\ge4\)
\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)
Vậy \(Max=3\Leftrightarrow x=0\)
Tìm GTNN
Ta có: A = |x - 1| + |x - 4|
=> A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3
=> A \(\ge\)3
Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0
<=> \(1\le x\le4\)
Vậy Min A = 3 <=> \(1\le x\le4\)
Tìm GTLN
Ta có: -|x + 2| \(\le\)0 \(\forall\)x
hay A \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max A = 0 <=> x = -2
M = ( 3x - 2y )2 - ( 4y - 6x )2 - | xy - 24 |
= 9x2 - 12xy + 4y2 - ( 16y2 - 48xy + 36x2 ) - | xy - 24 |
= 9x2 - 12xy + 4y2 - 16y2 + 48xy - 36x2 - | xy - 24 |
= -27x2 + 36xy - 12y2 - | xy - 24 |
= -3( 9x2 - 12xy + 4y2 ) - | xy - 24 |
= -3( 3x - 2y )2 - | xy - 24 |
Ta có : \(\hept{\begin{cases}-3\left(3x-2y\right)^2\le0\forall x,y\\-\left|xy-24\right|\le0\forall x,y\end{cases}}\Rightarrow-3\left(3x-2y\right)^2-\left|xy-24\right|\le0\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}3x-2y=0\left(1\right)\\xy-24=0\left(2\right)\end{cases}}\)
Từ (1) => 3x = 2y => x = 2/3y
Thế x = 2/3y vào (2) ta được :
(2) <=> 2/3y2 = 24
<=> y2 = 36
<=> y = ±6
Với y = 6 => x = 4
Với y = -6 => x = -4
Vậy giá trị lớn nhất của M là 0, đạt được khi \(\hept{\begin{cases}x=4\\y=6\end{cases}}\)hoặc \(\hept{\begin{cases}x=-4\\y=-6\end{cases}}\)
\(A=4-\left|5x-2\right|-\left|3y+12\right|\le4\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}5x-2=0\\3y+12=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
Vậy \(max_A=4\) khi \(\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)