Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
P=(x - 1)(x - 3)(x - 4)(x - 6) + 5
P=(x - 1)(x - 6)(x - 3)(x - 4) +5
P=(x^2 - 7x + 6)(x^2 - 7x + 12)+5
Dặt x^2 - 7x + 9 là a, ta có:
P=(a + 3)(a - 3)+5
P=a^2 - 4
=>Pmin= -4
Câu 2:
Q=(a + b)(1/a + 1/b)
Q=a/a + a/b + b/a + b/b
Q=2 + (a/b + b/a)
Gọi a/b là x, ta có:
(x - 1)^2 lớn hơn hoặc băng 0 =>x^2 - 2x + 1 lớn hơn hoặc băng 0
=>x^2 + 1 lớn hơn hoặc băng 2x => x(x + 1/x) lớn hơn hoặc băng 2x
=>x + 1/x lớn hơn hoặc băng 2 =>Min x + 1/x = 2
Có: a/b+b/a = x + 1/x
=>Qmin=2 + 2=4
Mình giải câu 2 hơi dài dòng bạn thông cảm nha. Cảm ơn!
Lời giải:
$A=x(x-3)(x-4)(x-7)=[x(x-7)][(x-3)(x-4)]$
$=(x^2-7x)(x^2-7x+12)$
$=a(a+12)$ (đặt $x^2-7x=a$)
$=a^2+12a=(a+6)^2-36=(x^2-7x+6)^2-36\geq 0-36=-36$
Vậy $A_{\min}=-36$. Giá trị này đạt tại $x^2-7x+6=0$
$\Leftrightarrow (x-1)(x-6)=0$
$\Leftrightarrow x=1$ hoặc $x=6$
a) C <=> 3(x2+5x-7)
<=> 3[(x2 + 2.5/2.x +25/4)-25/4 -7]
<=> 3(x+5/2)2-159/4 >= -159/4
Vậy Min C = -159/4 <=> x + 5/2 =0 <=> x=-5/2
b) x2 +2x +5 = x2 +2x +1+4=(x+1)2+4>=4
ta có: D = 5/x2+2x+5 = 5/(x+1)2+4 <= 5/4
Vậy Max D = 5/4 <=> x= -1
\(A_{min}=8-\frac{25}{4}\) khi x=5/2
Bmin=xem lại đề đúng như đề Bmin=5 khi x=0
C=8+25-(2x+5)^2
Cmax=8+25 khi x=-5/2
Dmax=9 khi x=0
1.a) Không tồn tại\(\)
b) 1997 tại x=4
c) 4 tại x=1;y=2
d) 164 tại x=8
2.a) x>3 và x<-1
b) Không tốn tại x
Chọn A