Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ghi thiếu cmnr đề r :>
\(A=\left|x-2016\right|+\left|x-1\right|=\left|x-2016\right|+\left|-x+1\right|\ge\left|x-2016-x+1\right|\)
\(\Leftrightarrow A\ge\left|2015\right|=2015\)
dấu "=" xảy ra khi \(\left(x-2016\right).\left(-x+1\right)\ge0\)
=> \(1\le x\le2016\)
Vậy Min A =2015 khi và chỉ khi \(1\le x\le2016\)
Nếu x < 2016 =>\(|x-2016|=2016-x\) .
Khi đó: A=2016-x+x-1=2015
Nếu \(x\ge2016\) =>\(|x-2016|=x-2016\) .
Khi đó: A=x-2016+x-1=2.x-2017 \(\ge2.2016-2017=2015\)
Vậy Amin=2015 \(\Leftrightarrow\)x=2016.
Ta có: \(\left|x-\dfrac{2}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-\dfrac{2}{3}\right|-1\ge-1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)
Áp dụng BĐT GTTĐ ta có:
\(M=\left|x-2002\right|+\left|x-2001\right|=\left|x-2002\right|+\left|2001-x\right|\)
\(\ge\)\(\left|x-2002+2001-x\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\left(x-2002\right)\left(2001-x\right)\ge0\)\(\Leftrightarrow\)\(2001\le x\le2002\)
Vậy MIN \(M=1\)khi \(2001\le x\le2002\)
\(\left|x-2016\right|\ge0\)
\(\Leftrightarrow-1,7+\left|x-2016\right|\ge-1,7\)
Dấu "=" xảy ra khi : \(\left|x+2016\right|=0\)
\(\Leftrightarrow x=-2016\)
Vậy ...