Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-3\right)\left(x-\dfrac{1}{4}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\x-\dfrac{1}{4}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Câu 1: Giá trị của x thỏa mãn
|x+2,37|+|y−5,3|=0
Để GTBT bằng 0 thì |x+2,37| = 0 và |y−5,3| = 0
-> x = -2,37 , y = 5,3
Vậy x = -2,37
Câu 2: Giá trị của y thỏa mãn
−|2x+\(\frac{4}{7}\)|−|y−1,37| = 0
-> |2x+\(\frac{4}{7}\) = 0 -> x = \(-\frac{2}{7}\)
-> |y−1,37| = 0 -> y = 1,37
Vậy y = 1,37
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
\(1,\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\1-2x=5\end{matrix}\right.\Leftrightarrow D\\ 2,\Leftrightarrow\left(-3\right)^x=-27\cdot81=-2187=\left(-3\right)^7\\ \Leftrightarrow x=7\left(A\right)\)
-Có \(\left|x+1\right|+\left(y-2\right)^2=0\)
-Vì \(\left|x+1\right|\ge0\forall x;\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left|x+1\right|=0\) ; \(\left(y-2\right)^2=0\)
\(\Rightarrow x=-1;y=2\)
-Thay \(x=-1;y=2\) vào \(C=2x^6y-3xy^3-20\) ta được:
\(C=2.\left(-1\right)^6.2-3.\left(-1\right).2^3-20=8\)
vì (2x-3).(x-1/4) <0
=> 2x-3 và x-1/4 khác dấu
=> \(\orbr{\begin{cases}\hept{\begin{cases}2x-3< 0\\x-\frac{1}{4}>0\end{cases}}\\\hept{\begin{cases}2x-3>0\\x-\frac{1}{4}< 0\end{cases}}\end{cases}}\)
+ Nếu \(\hept{\begin{cases}2x-3< 0\\x-\frac{1}{4}>0\end{cases}}\) => \(\hept{\begin{cases}2x< 3\\x>\frac{1}{4}\end{cases}}\) => \(\hept{\begin{cases}x< \frac{3}{2}\\x>\frac{1}{4}\end{cases}}\) => \(\frac{1}{4}< x< \frac{3}{2}\)
+Nếu \(\hept{\begin{cases}2x-3>0\\x-\frac{1}{4}< 0\end{cases}}\)=> \(\hept{\begin{cases}2x>3\\x< \frac{1}{4}\end{cases}}\) => \(\hept{\begin{cases}x>\frac{3}{2}\\x< \frac{1}{4}\end{cases}}\)(vô lý) => loại
Vậy \(\frac{1}{4}< x< \frac{3}{2}\)
\(-\frac{17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(\Leftrightarrow-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{12}{12}-\frac{6}{12}+\frac{4}{12}-\frac{3}{12}\)
\(\Leftrightarrow-\frac{17}{21}.\frac{20}{17}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x< \frac{1}{84}\)
\(\Leftrightarrow-\frac{80}{84}< x< \frac{1}{84}\)
\(\Leftrightarrow-80< x< 1\Leftrightarrow x\in\left\{-79;-78;...;0\right\}\)
mà để Giá trị nguyên lớn nhất của x
\(\Rightarrow x=-1\)