Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Ta có:
Nếu m = 1 thì y' = -18x-18 ⇔ x ≤ -1
Do đó m = 1 không thỏa mãn yêu cầu bài toán.
Nếu
Chọn A
Ta có:
Với nên f(x) đồng biến trên ℝ
Với nên f(x) nghich biến trên ℝ
Suy ra: Vì f(x) nghich biến trên ℝ nên và
Từ đây ,ta suy ra:
=> chọn đáp án A
Chọn D
Phương pháp:
Sử dụng: Hàm số y = ax+b đồng biến ⇔ a > 0, từ đó kết hợp điều kiện đề bài để tìm các giá trị của m.
Cách giải:
Hàm số y = (m-2)x + 2 đồng biến trên ℝ ⇔ m - 2 > 0 ⇔ m > 2
Mà => có 2016 giá trị nguyên của m thỏa mãn đề bài.
Chọn A
Tập xác định: D = ℝ . Ta có Để hàm số nghịch biến trên ℝ thì
Chọn D.
Ta có: y = x + m x 2 + 2
⇒ y ' = 1 + m x x 2 + 2
Hàm số đã cho đồng biến trên ℝ
và f ' x = 0 tại hữu hạn điểm.
+) Với x = 0 ⇒ y ' ≥ 0 ∀ m ⇒ t m
+) Với x > 0 ta có: (*)
+) Với x < 0 ta có: (*)
Xét g x = - x 2 + 2 x x # 0 t a c ó :
g ' x = 2 x 2 x 2 + 2 > 0 ∀ x ∈ ℝ
⇒ Hàm số đồng biến trên trên - ∞ ; 0 v à 0 ; + ∞
BBT:
Từ BBT ta được: - 1 ≤ m ≤ 1 thỏa mãn bài toán
Mà m ∈ ℤ ⇒ m ∈ - 1 ; 0 ; 1
Chọn A
Hàm số y = f(x) thỏa mãn f'(x) < 0 ∀ x ∈ ( a ; b ) nên hàm số nghịch biến trên (a;b).
Do đó
Chọn D
Hàm số xác định với mọi thì luôn đúng với mọi
+) Ta có:
Xét hàm số
Từ bảng biến thiên ta thấy để
Kết hợp điều kiện
Kết luận: có 2019 giá trị của m thỏa mãn bài toán.
Chọn A.
TXĐ: D = R.
có 2 nghiệm phân biệt
BBT:
Vậy hàm số đạt giá trị lớn nhất là
YCBT
Chọn A.
Ta có: . Đặt , do 0 ≤ cos2x ≤ 1 nên ta có
Xét hàm số có
Lại có
Vậy