Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x - y = 4
=> (x - y)2 = 42
=> x2 + y2 - 2xy = 16
Thay xy = 5 vào đẳng thức trên ta được :
x2 + y2 - 2 . 5 = 16
=> x2 + y2 = 16 + 10
Vậy x2 + y2 = 26
có x-y=4
=>(x-y)^2=4^2
=>x^2+y^2-2xy=16
=>x^2+y^2-2.5=16(vì xy=5)
=>x^2+y^2=26
Ta có:(12x^3-7x^2-14x+14): (4x-5)= (3x^2+2x-1)+9: (4x-5). Để (12x^3-7x^2-14x+14)chia hết cho (4x-5) thì 9 phải chia hết cho(4x-5).=>4x-5 thuộc vào ước của 9=+-1;+-3;+-9.xét từng giá trị để tìm x thỏa mãn khi x<0. Sau đó kết luận.
\(P=\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{8x^3+1}\)
\(=\frac{x^4\left(2x-1\right)-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{\left(x^4-1\right)\left(2x-1\right)\left(4x^2-2x+1\right)+2\left(2x-1\right)\left(4x^2+2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{\left(2x-1\right)\left(4x^2-2x+1\right)\left(x^4-1+2\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{x^4+1}{2x+1}\)
Ta có x-y=4
<=>(x-y)^2=16
<=>x^2-2xy+y^2=16
<=>x^2+y^2-2.5=16
<=>x^2+y^2-10=16
<=>x^2+y^2=26
<=>x^2+y^2+2xy=26+10
<=>(x+y)^2=36
<=>x+y=6 hoặc -6
từ x - y = 4 suy ra y = x - 4
thay vào xy=5 suy ra x(x-4)=5
suy ra x^2-4x+4=9
suy ra (x-2)^2=9
suy ra x-2=+-3
vi x<0 suy ra x=-3+2=-1
suy ra y=x-4=-1-4=-5
suy ra x+y=-1+-5=-6