Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}\right):\dfrac{2x+1-x-3}{x+3}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9+4x^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x-2}\)
\(=\dfrac{4x^2-12x}{x-3}\cdot\dfrac{1}{x-2}=\dfrac{4x}{x-2}\)
b: \(2x^2-5x+2=0\)
=>(x-2)(2x-1)=0
=>x=1/2
Thay x=1/2 vào P, ta được:
\(P=\left(4\cdot\dfrac{1}{2}\right):\left(\dfrac{1}{2}-2\right)=2:\dfrac{-3}{2}=\dfrac{-4}{3}\)
a, ĐKXĐ: \(x\ne1;x\ne-1\)
b, Với \(x\ne1;x\ne-1\)
\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)
=> ĐPCM
Lời giải:
a.
\(A=\left[\frac{(2+x)^2}{(2-x)(2+x)}+\frac{4x^2}{(2-x)(2+x)}-\frac{(2-x)^2}{(2-x)(2+x)}\right]:\frac{x(x-3)}{x^2(2-x)}\)
\(=\frac{(2+x)^2+4x^2-(2-x)^2}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x(x+2)}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x^2}{x-3}\)
b.
Khi $x=12$ thì $A=\frac{4.12^2}{12-3}=64$
c.
$A=1\Leftrightarrow \frac{4x^2}{x-3}=1$
$\Leftrightarrow 4x^2=x-3$
$\Leftrightarrow 4x^2-x+3=0$
$\Leftrightarrow (2x-\frac{1}{4})^2=-\frac{47}{16}< 0$ (vô lý)
Vậy không tồn tại $x$
d. Để $A$ nguyên thì $\frac{4x^2}{x-3}$ nguyên
$\Leftrightarrow 4x^2\vdots x-3$
$\Leftrightarrow 4(x^2-9)+36\vdots x-3$
$\Leftrightarrow 36\vdots x-3$
$\Leftrightarrow x-3\in\left\{\pm 1;\pm 2;\pm 3;\pm 4;\pm 9; \pm 12; \pm 36\right\}$
Đến đây bạn có thể tự tìm $x$ được rồi, chú ý ĐKXĐ để loại ra những giá trị không thỏa mãn.
e.
$A>4\Leftrightarrow \frac{4x^2}{x-3}>4$
$\Leftrightarrow \frac{x^2}{x-3}>1$
$\Leftrightarrow \frac{x^2-x+3}{x-3}>0$
$\Leftrightarrow x-3>0$ (do $x^2-x+3>0$ với mọi $x$ thuộc ĐKXĐ)
$\Leftrightarrow x>3$. Kết hợp với đkxđ suy ra $x>3$
bài 1 : a. x^3 +27 -54-x^3 =-27
b. 8x^3 +y^3 -8x^3 +y^3 =2y^3
c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3
d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3
\(P=\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{8x^3+1}\)
\(=\frac{x^4\left(2x-1\right)-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{\left(x^4-1\right)\left(2x-1\right)\left(4x^2-2x+1\right)+2\left(2x-1\right)\left(4x^2+2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{\left(2x-1\right)\left(4x^2-2x+1\right)\left(x^4-1+2\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\frac{x^4+1}{2x+1}\)
bạn ơi tìm các giá trị của x sau khi bạn đã rút gọn í cái đề mk đăng lên là dậy đó tìm x khi P = 6 đó!