\(\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

\(a+b+c=1\Rightarrow\hept{\begin{cases}ab+c=ab+c\left(a+b+c\right)\\bc+a=bc+a\left(a+b+c\right)\\ca+b=ca+b\left(a+b+c\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab+c=ab+ca+bc+c^2\\bc+a=bc+a^2+ab+ac\\ca+b=ca+ab+b^2+bc\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab+c=\left(b+c\right)\left(a+c\right)\\bc+a=\left(a+c\right)\left(a+b\right)\\ca+b=\left(b+c\right)\left(a+b\right)\end{cases}}\)

\(\Rightarrow P=\frac{\left(b+c\right)\left(a+c\right)}{\left(a+b\right)^2}.\frac{\left(a+c\right)\left(a+b\right)}{\left(b+c\right)^2}.\frac{\left(b+c\right)\left(a+b\right)}{\left(c+a\right)^2}=1\)

NV
5 tháng 2 2020

\(P=\frac{ab+c\left(a+b+c\right)}{\left(a+b\right)^2}.\frac{bc+a\left(a+b+c\right)}{\left(b+c\right)^2}.\frac{ca+b\left(a+b+c\right)}{\left(c+a\right)^2}\)

\(=\frac{\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)

20 tháng 6 2017

\(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)

\(=\frac{ab+c\left(a+b+c\right)}{\left(a+b\right)^2}.\frac{bc+a\left(a+b+c\right)}{\left(b+c\right)^2}.\frac{ca+b\left(a+b+c\right)}{\left(c+a\right)^2}\)

\(=\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}.\frac{\left(a+b\right)\left(a+c\right)}{\left(b+c\right)^2}.\frac{\left(b+a\right)\left(b+c\right)}{\left(c+a\right)^2}=1\)

13 tháng 11 2018

Với điều kiện như đề bài

Ta có: \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{b^2-a^2+a^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{\left(b-a\right)\left(b+a\right)+\left(a-c\right)\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\)

Tướng tự: 

\(\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}=\frac{c-b}{b+a}+\frac{b-a}{b+c}\)

\(\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\)

Em nhớ làm tiếp nhé!

13 tháng 11 2018

làm tiếp kiểu gì ạ