Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+...+\frac{15}{72.75}\)
\(=5\left(\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+...+\frac{3}{72.75}\right)\)
\(=5\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+...+\frac{1}{72}-\frac{1}{75}\right)\)\(=5\left(\frac{1}{11}-\frac{1}{75}\right)\)
\(=\frac{64}{165}\)
\(\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{68.71}\)
\(=5\left(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{68}-\dfrac{1}{71}\right)\)
\(=5\left(\dfrac{1}{11}-\dfrac{1}{71}\right)\)
\(=5.\dfrac{60}{781}\)
\(=\dfrac{300}{781}\)
\(\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+.......+\frac{15}{74.77}\)
\(=5\left(\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+.......+\frac{3}{74.77}\right)\)
\(=5\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+.....+\frac{1}{74}-\frac{1}{77}\right)\)
\(=5\left(\frac{1}{11}-\frac{1}{77}\right)\)
\(=5\left(\frac{7}{77}-\frac{1}{77}\right)\)
\(=5.\frac{6}{77}\)
\(=\frac{30}{77}\)
\(\frac{3}{15}\cdot G=\frac{3}{11\cdot14}+\frac{3}{14\cdot17}+...+\frac{3}{68\cdot71}\)
\(\frac{3}{15}\cdot G=\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{68}-\frac{1}{71}\)
\(\frac{3}{15}\cdot G=\frac{1}{11}-\frac{1}{71}\)
\(G=\frac{60}{781}\cdot\frac{15}{3}\)
\(G=\frac{300}{781}\)
ta có :\(\frac{3}{15}G=\left(\frac{15}{11.14}+\frac{15}{14.17}+...+\frac{15}{68.71}\right)\)
\(\frac{3}{15}G=\frac{3}{11.14}+\frac{3}{14.17}+...+\frac{3}{68.71}\)
\(\frac{3}{15}G=\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{68}-\frac{1}{71}\)
\(\frac{3}{15}G=\frac{1}{11}-\frac{1}{71}=\frac{71}{781}-\frac{11}{781}=\frac{60}{781}\)
\(=>G=\frac{60}{781}:\frac{3}{15}=\frac{900}{2343}\)
vậy G =900/2343
`3x-15/(5*8)-15/(8*11)-15/(11*14)-...-15/(47*50)=2 1/10`
`3x-(15/(5*8)+15/(8*11)+15/(11*14)+...+15/(47*50))=21/10`
`3x-5(3/(5*8)+3/(8*11)+3/(11*14)+...+3/(47*50))=21/10`
`3x-5(1/5-1/8+1/8-1/11+1/11-1/14+...+1/47-1/50)=21/10`
`3x-5(1/5-1/50)=21/10`
`3x-5*9/50=21/10`
`3x-9/10=21/10`
`3x=21/10+9/10`
`3x=3`
`x=1`
\(B=x+\dfrac{0,2-0,375+\dfrac{5}{11}}{-0,3+\dfrac{9}{16}-\dfrac{15}{22}}\)
\(=x+\dfrac{\dfrac{1}{5}-\dfrac{3}{8}+\dfrac{5}{11}}{-\left(\dfrac{3}{10}-\dfrac{9}{16}+\dfrac{15}{22}\right)}\)
\(=x+\dfrac{\dfrac{1}{5}-\dfrac{3}{8}+\dfrac{5}{11}}{-\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{3}{8}+\dfrac{5}{11}\right)}\)
\(=x+\dfrac{1}{-\dfrac{3}{2}}\)
\(=x+\dfrac{-2}{3}\)
Với \(x=-\dfrac{1}{3}\), ta được:
\(B=-\dfrac{1}{3}+\dfrac{-2}{3}=-\dfrac{3}{3}=-1\)
\(C=\left|-3\left(\dfrac{-13}{15}-\dfrac{17}{21}\right)\right|-\left|\dfrac{-13}{15}+\dfrac{17}{7}\right|+\left(-12+\dfrac{35}{3}\right):\left|-\dfrac{7}{6}\right|\\ =\left|-3.-\dfrac{176}{105}\right|-\left|-\dfrac{6}{35}\right|+\left(-\dfrac{1}{3}\right):\dfrac{7}{6}\\ =\dfrac{176}{35}-\dfrac{6}{35}-\dfrac{1}{3}:\dfrac{7}{6}\\ =\dfrac{176}{35}-\dfrac{6}{35}-\dfrac{2}{7}\\ =\dfrac{170}{35}-\dfrac{2}{7}=\dfrac{32}{7}.\)
a) = (\(-\dfrac{141}{20}\)- \(\dfrac{1}{4}\)) : (-5) + \(\dfrac{1}{15}\) - \(\dfrac{1}{15}\)
= \(-\dfrac{73}{10}\) : - 5
= \(\dfrac{73}{50}\)
b) = \(\left(\dfrac{3}{25}-\dfrac{28}{25}\right)\). \(\dfrac{7}{3}\) : \(\left(\dfrac{7}{2}-\dfrac{11}{3}.14\right)\)
= \(-\dfrac{7}{3}\) . \(-\dfrac{6}{287}\)
= \(\dfrac{2}{41}\)
\(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\)
Do \(x^2+3\ge3;\forall x\)
\(\Rightarrow\dfrac{12}{x^2+3}\le\dfrac{12}{3}=4\)
\(\Rightarrow B\le1+4=5\)
Vậy \(B_{max}=5\) khi \(x=0\)
theo bài ra ta có:
\(E=\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{74.77}\\ \Rightarrow\dfrac{1}{5}E=\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}+...+\dfrac{3}{74.77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{74}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{7}{77}-\dfrac{1}{77}=\dfrac{6}{77}\\ \Rightarrow E=\dfrac{6}{77}.5\\ E=\dfrac{30}{77}\)
5 .\((\)\(\dfrac{3}{11.14}+\dfrac{3}{14.17}+...+\dfrac{3}{74.77}\))
= 5. (\(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+...+\dfrac{1}{74}-\dfrac{1}{77}\))
= 5.(\(\dfrac{1}{11}-\dfrac{1}{77}\))
= 5. \(\dfrac{6}{77}\)
= \(\dfrac{30}{77}\)