Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3A=3^2+3^3+...+3^{11}\)
=>\(3A-A=\left(3^2+3^3+...+3^{11}\right)-\left(3+3^2+...+3^{10}\right)\)
=>\(2A=3^{11}-3\)
=>\(A=\frac{3^{11}-3}{2}\)
\(A=\dfrac{5}{11}.\dfrac{5}{7}+\dfrac{5}{11}.\dfrac{2}{7}+\dfrac{6}{11}=\dfrac{5}{11}\left(\dfrac{5}{7}+\dfrac{2}{7}\right)+\dfrac{6}{11}=\dfrac{5}{11}.1+\dfrac{6}{11}=\dfrac{5}{11}+\dfrac{6}{11}=\dfrac{11}{11}=1\)
\(B=\dfrac{3}{13}.\dfrac{6}{11}+\dfrac{3}{13}.\dfrac{9}{11}-\dfrac{3}{13}.\dfrac{4}{11}=\dfrac{3}{13}\left(\dfrac{6}{11}+\dfrac{9}{11}-\dfrac{4}{11}\right)=\dfrac{3}{13}.1=\dfrac{3}{13}\)
\(C=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right)\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right).0=0\)
a, A = 3 + 3 2 + 3 3 + . . . + 3 12 => 3A = 3 2 + 3 3 + . . . + 3 13
=> 3A - A = ( 3 2 + 3 3 + . . . + 3 13 ) - ( 3 + 3 2 + 3 3 + . . . + 3 12 )
=> 2A = 3 13 - 3 => A = 3 13 - 3 2
Vì A = 3 x - 3 2 => x = 13 => x+2016 = 2029
b, Số tập hợp con của tập A có x phần tử là 2 x
=> 2 x = 64 = 2 6 => x = 6. Vậy tập A có 6 phần tử
Ý bạn đề bài là: \(A=3+3^2+3^3+...+3^{14}\) phải không? Nếu đúng thì mình sẽ ghi lời giải ở dưới, sai đề thì bạn inbox riêng với mình nhé! Mình sẽ giải giúp bạn!
\(A=3+3^2+3^3+...+3^{14}\)
\(3A=3^2+3^3+...+3^{15}\)
\(3A-A=\left(3^2+3^3+...+3^{15}\right)-\left(3+3^2+...+3^{14}\right)\)
\(2A=3^{15}-3\)
\(A=\left(3^{15}-3\right):2\)
\(A=7174452\)