Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{-1,2}{3,2}\Rightarrow\frac{a}{-1,2}=\frac{b}{3,2}=\frac{a-b}{-1,2-3,2}=\frac{5,94}{-4,4}=-1,35\Rightarrow a=-1,35.\left(-1,2\right)=1,62\)
a^2+9ab-22b^2=0
=>a^2+11ab-2ab-2b^2=0
=>(a+11b)(a-2b)=0
=>a=2b hoặc a=-11b
TH1: a=2b
\(M=\dfrac{2b+3b}{4b-b}=\dfrac{5}{3}\)
TH2: a=-11b
\(M=\dfrac{-11b+3b}{-22b-b}=\dfrac{8}{23}\)
ab+bc+ca=414
=>2a+2b+2c=414
=>2(a+b+c)=414
=>a+b+c=207
Áp dụng t/c của dãy tỉ số bằng nhau, ta có
a/2=b/3=c/8=a+b+c/2+3+8=207/13=15,9
a/2=15,9=>a=31,8
b/3=15,9=>b=47,7
c/8=15,9=>c=127,2
Kết luận
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\) => \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
=> A = 2 + 2+ 2 = 6
vậy...
\(\text{Giải :}\)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
\(\Rightarrow\text{A = 2 + 2 + 2 = 2 . 3 = 6}\)
\(\text{Vậy ....................}\)