Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(\frac{a^2-4}{2x-5}=2+a\)
\(ĐKXĐ:x\ne\frac{5}{2}\)
\(\Rightarrow\left(2+a\right).\left(2x-5\right)=a^2-4\)
\(\Rightarrow2x-5=\frac{a^2-4}{a+2}=a-2\)
\(\Leftrightarrow x=\frac{a-3}{2}\)
vì x là số nguyên dương nhỏ hơn 2 nên x=1
\(\Leftrightarrow1=\frac{a-3}{2}\)
\(\Leftrightarrow a-3=2\)
\(\Leftrightarrow a=5\)
\(2x^4-10x^2+17=0\)
\(\Rightarrow4x^4-20x^2+68=0\)
\(\Rightarrow\left(2x-5\right)^2+33=0\)(vô lí)
phần b làm tương tự
1)\(x=-2\Leftrightarrow8\left(-2\right)-7+m=-2-6\Rightarrow m=15\)
2) không dõ đề
3) \(\left(x-\frac{1}{20}\right)^2=\frac{1}{5}+\frac{1}{400}=\frac{81}{400}\)\(\Leftrightarrow x=\frac{1}{20}+\frac{9}{20}=\frac{1}{2};x=\frac{1}{20}-\frac{9}{20}=-\frac{2}{5}\)
a) Thay \(x=1\)vào pt ta được :
\(1+k-4-4=0\)
\(\Leftrightarrow k-7=0\)
\(\Leftrightarrow k=7\)
b) Thay \(k=7\)vào pt ta được :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(8x^2-8x\right)+\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
* \(x-1=0\Leftrightarrow x=1\)
* \(x^2+8x+4=0\)
Ta có : \(\Delta=8^2-4\times4=48>0\)
\(\Rightarrow\)pt có 2 nghiệm : \(\orbr{\begin{cases}x_1=\frac{-8-\sqrt{48}}{2}=-4-2\sqrt{3}\\x_2=\frac{-8+\sqrt{48}}{2}=-4+2\sqrt{3}\end{cases}}\)
Vậy ...