Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x1 là nghiệm của pt => \(ax1^2+bx1+c=0\)
Do x1 > 0 . chia cả hai vế cho x1^2 ta đc pt:
\(a+b\cdot\left(\frac{1}{x1}\right)+c\left(\frac{1}{x1}\right)^2=0\) => \(\frac{1}{x1}\) là nghiệm của pt (2)
=> \(x3=\frac{1}{x1}\) (1)
CMTT x4 = 1/x2 (2)
Vì pt (1) có 2 n* nguyên dương x1 ; x2 => pt (2) cũng có hai nghiệm nguyên dương x3 ; x4
Xét \(x1+x2+x3+x4=x1+x2+\frac{1}{x1}+\frac{1}{x2}=\left(x1+\frac{1}{x1}\right)+\left(x2+\frac{1}{x2}\right)\ge4\) ( BĐT cô si )
(1) (2) có delta như nhau.
\(x_1.x_2.x_3.x_4=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2a}.\frac{-b+\sqrt{\Delta}}{2c}.\frac{-b-\sqrt{\Delta}}{2c}=\frac{\left(4ac\right)^2}{16a^2c^2}=1\)
Cô si 4 số dương => KL...
+b2 - 4ac > 0
+x1 - x2 = 5
+ x12 - x23 =5[(x1-x2)2 -3x1x2] =35 => 25 - 3 x1x2 =7 => - x1.x2 = -6
=> x1 ; - x2 là nghiệm của pt : X2 -5X - 6 =0 => X1 =-1 ; -X2 = 6 hoặc x1 = 6 ; -x2 =-1
+ x1 = -1 ; x2 =-6 => a = 7 ; b = 6
+ x1 =6 ; x2 = 1 => a =-7 ; b = 6
Theo ht Viete ta có :
\(\int^{x1+x2=-\frac{b}{a}}_{x1x2=\frac{c}{a}}\)
Xét \(\frac{1}{x1^2}+\frac{1}{x2^2}=\frac{x1^2+x2^2}{x1^2x2^2}=\frac{\left(x1+x2\right)^2-2x1x2}{x1^2\cdot x2^2}=\frac{\left(\frac{-b}{a}\right)^2-\frac{2c}{a}}{\left(\frac{c}{a}\right)^2}\) rút gọn tiếp nha (1)
\(\frac{1}{x1^2}\cdot\frac{1}{x2^2}=\frac{1}{\left(x1x2\right)^2}=\frac{1}{\left(\frac{c}{a}\right)^2}=\frac{a^2}{c^2}\) (2)
Từ (1) và (2) => \(\frac{1}{x1^2};\frac{1}{x2^2}\) là nghiệm pt ....
bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm
a, Pt có nghiệm \(x=\sqrt{2}\) tức là
\(2\left(m-4\right)-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow2m-8-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow m\left(3-2\sqrt{2}\right)=10\)
\(\Leftrightarrow m=\frac{10}{3-2\sqrt{2}}\)
b, *Với m = 4 thì pt trở thành
\(\left(4-4\right)x^2-2.4.x+4-2=0\)
\(\Leftrightarrow-8x+2=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
Pt này ko có nghiệm kép
*Với \(m\ne4\)thì pt đã cho là pt bậc 2
Có \(\Delta'=m^2-\left(m-4\right)\left(m-2\right)=m^2-m^2-6m+8=-6m+8\)
Pt có nghiệm kép \(\Leftrightarrow\Delta'=0\)
\(\Leftrightarrow m=\frac{4}{3}\)
Với \(m=\frac{4}{3}\) thì \(\Delta'=0\)
Pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m}{m-4}=\frac{\frac{4}{3}}{\frac{4}{3}-4}=-\frac{1}{2}\)
c, Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)
\(\Leftrightarrow-6m+8>0\)
\(\Leftrightarrow m< \frac{4}{3}\)
dcv_new
dcv - new
Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)
<=> x = 3 hoặc x = -2
Vậy m = -1 và x2 = - 2
a, Thay \(x_1=3\)vào phương trình , khi đó :
\(pt< =>\)\(3^2+3m+2m-4=0\)
\(< =>5m+5=0\)
\(< =>m=-\frac{5}{5}=-1\)
Thay \(m=-1\)vào phương trình , khi đó :
\(pt< =>x^2-x+2=0\)
\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)
Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)
b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)
Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)
Bạn thiếu đề rồi thì phải !
Ta có (a + c)2 < ab + bc - 2ac
<=> ab + bc - a2 - c2 - 4ac > 0 (1)
Ta lại có a2 + b2 + c2 \(\ge\)ab + bc +ca > ab + bc (2)
Từ (1) và (2) => b2 - 4ac > 0
Vậy PT luôn có nghiệm
CÁI BÀI NÀY CÂU HỎI LÀ LÀM GÌ VẬY ĐỌC KO HỈU LẮM
phantuananh mk cũng bị cái câu hỏi làm cho @@ ùi