Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tiền giảm đi là:
\(55000000\cdot5=275000000\left(đồng\right)\)
Giá tiền còn lại của chiếc xe sau 5 năm sử dụng là:
\(680000000-275000000=405000000\left(đồng\right)\)
a) Công thức tính giá trị của ô tô:
- Sau 1 năm: \(800 - 800.4\% = 768\) (triệu đồng)
- Sau 2 năm: \(768 - 768.4\% = 737,28\) (triệu đồng)
b) Công thức tính giá trị của ô tô sau n năm sử dụng: \({S_n} = 800{\left( {1 - 0,04} \right)^n}\)
c) Sau 10 năm, giá trị của ô tô ước tính còn: \({S_{10}} = 800{\left( {1 - 0,04} \right)^{10}} \approx 531,87\) (triệu đồng)
Ta có: \({u_1} = 3,\;q = 1- 0,2 = 0,8\).
Giá trị của máy ủi sau n năm là: \({u_n} = 3 \times {0,8^{n - 1}}\)
Vậy sau 5 năm sử dụng giá trị của máy ủi là: \({u_5} = 3 \times {0,8^{5 - 1}} = 1,2288\) (tỷ đồng)
Gọi số tiền bạn Niên phải gửi là x(đồng)(ĐK: x>0)
Tháng thứ nhất bạn Niên nhận được là \(x\cdot\left(1+0.27\%\right)\left(đồng\right)\)
Số tiền nhận được sau 2 tháng là:
\(\left[x\left(1+0.27\%\right)+x\right]\cdot\left(1+0.27\%\right)\)
\(=x\cdot\left(1+0.27\%\right)^2+x\cdot\left(1+0.27\%\right)\)
Theo đề, ta có:
\(x\cdot\left(1+0.27\%\right)^{12}+x\cdot\left(1+0.27\%\right)^{11}+...+x\cdot\left(1+0.27\%\right)=20000000\)
=>\(x\cdot\left(1+0.27\%\right)\cdot\left[\left(1+0.27\%\right)^{11}+\left(1+0.27\%\right)^{10}+...+1\right]=20000000\)
=>\(x\cdot\left(1+0.27\%\right)\cdot\dfrac{1-\left(1+0.27\%\right)^{11}}{1-\left(1+0.27\%\right)}=20000000\)
=>\(x\simeq1788939\)(đồng)
Có \(7! = 5040\) cách sắp xếp 7 bạn ngồi vào 7 chiếc ghế \( \Rightarrow n\left( \Omega \right) = 5040\)
Gọi \(A\) là biến cố: “Bình vẫn ngồi đúng ghế cũ của mình”, \(B\) là biến cố “Minh vẫn ngồi đúng ghế cũ của mình”.
Vậy \(AB\) là biến cố “Cả Bình và Minh vẫn ngồi đúng ghế cũ của mình”, \(A \cup B\) là biến cố “Có ít nhất một trong hai bạn Bình và Minh vẫn ngồi đúng ghế cũ của mình”.
Xếp chỗ cho Bình ngồi đúng ghế cũ của mình có 1 cách.
Xếp chỗ cho 6 bạn còn lại có \(6! = 720\) cách.
\( \Rightarrow n\left( A \right) = 1.720 = 720 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{720}}{{5040}} = \frac{1}{7}\)
Xếp chỗ cho Minh ngồi đúng ghế cũ của mình có 1 cách.
Xếp chỗ cho 6 bạn còn lại có \(6! = 720\) cách.
\( \Rightarrow n\left( B \right) = 1.720 = 720 \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left(\Omega \right)}} = \frac{{720}}{{5040}} = \frac{1}{7}\)
Xếp chỗ cho cả Bình và Minh ngồi đúng ghế cũ của mình có 1 cách.
Xếp chỗ cho 5 bạn còn lại có \(5! = 120\) cách.
\( \Rightarrow n\left( {AB} \right) = 1.120 = 120 \Rightarrow P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}} = \frac{{120}}{{5040}} = \frac{1}{{42}}\)
\( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{1}{7} + \frac{1}{7} - \frac{1}{{42}} = \frac{{11}}{{42}}\)
a, Nếu tỉ lệ lạm phát 8% một năm thì sức mua của 100 triệu đồng sau hai năm sẽ còn lại
\(A=100\cdot\left(1-\dfrac{8}{100}\right)^2=84,64\) (triệu đồng)
b, Nếu sức mua của 100 triệu đồng sau hai năm chỉ còn là 90 triệu đồng thì
\(90=100\cdot\left(1-\dfrac{r}{100}\right)^2\Leftrightarrow\left(1-\dfrac{r}{100}\right)^2=0,9\Leftrightarrow r\approx5,13\)
Vậy nếu sức mua của 100 triệu đồng sau hai năm chỉ còn là 90 triệu đồng thì tỉ lệ lạm phát trung bình của hai năm đó là khoảng 5,13%.
c) Nếu tỉ lệ lạm phát là 5% một năm và sức mua của số tiền ban đầu chỉ còn lại một nửa ta có
\(\dfrac{P}{2}=P\cdot\left(1-\dfrac{5}{100}\right)^n\Leftrightarrow\left(\dfrac{19}{20}\right)^n=\dfrac{1}{2}\\
\Leftrightarrow n=log_{\dfrac{19}{20}}\left(\dfrac{1}{2}\right)\approx13,51\)
Vậy nếu tỉ lệ lạm phát là 5% một năm thì sau 14 năm sức mua của số tiền ban đầu chỉ còn lại một nửa.
Giá còn lại của chiếc xe sau 5 năm sử dụng là:
\(680000000-55000000\cdot5=405000000\left(đồng\right)\)