K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

HÌnh bạn tự vẽ.

Bổ đề: (định lý Ptô-lê-mê)

Trong một tứ giác nội tiếp ABCD, ta có:

AC . BD = AB . CD + BC . AD

Áp dụng bổ đề trên cho tứ giác nội tiếp IPAN, ta có IA.NP = IP.AN + IN.AP = 2r(p - a) (ở đây ta đặt BC = a, CA = b, AB = c) và

\(p=\frac{a+b+c}{2}\) thì AN = AP = p - a.

Tương tự IB . PM = 2r(p - b)

                 IC . MN = 2r(p - c)

Nhân theo vế ba đẳng thức trên ta được:

\(IA.IB.IC.MN.NP.PM=8r^3\left(p-a\right)\left(p-b\right)\left(p-c\right)\).

Mặt khác, vì r là bán kính đường tròn ngoại tiếp \(\Delta MNP\)nên MN.NP.PM = \(4rS_{MNP}\).

Ngoài ra theo công thức Hê-rông ta có:

\(S_{ABC}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\).Do đó:

IA . IB . IC. 4rSMNP = \(\frac{8r^3.S^2_{ABC}}{p}=8r^4S_{ABC}\)(vì SABC = pr), suy ra đpcm

  P/s: Chỗ nào không hiểu thì bạn chỉ việc vẽ hình ra và quan sát hình là được :))

1 tháng 7 2019

Đây toán lớp 9, ko phải toán 7 nha!

B C A O M N K H I

(O) tiếp xúc AB;AC lần lượt tại H;K 

\(S_{AMN}=S_{OAM}+S_{OAN}=\frac{1}{2}OH.AM+\frac{1}{2}OK.AN=\frac{AM+AN}{2}\)

Vẽ \(MI\perp AC;I\in AC\)

Ta có: \(AM\ge MI\)

Áp dụng bất đẳng thức Côsi cho hai số không âm , ta có:

\(\frac{AM+AN}{2}\ge\sqrt{AM.AN}\)

Do đó :\(S_{AMN}\ge\sqrt{AM.AN}\ge\sqrt{MI.AN}\)

Ta có: \(S_{AMN}\ge\sqrt{2S_{AMN}}\Leftrightarrow S^2_{AMN}\ge2S_{AMN}\Leftrightarrow S_{AMN}\ge2\)

Dấu " = " xảy ra \(\Leftrightarrow I=A\Leftrightarrow MN\perp OA;\widehat{BAC}=90^0\)

Giá trị nhỏ nhất của diện tích tam giác AMN là 2

2 tháng 8 2020

đường thằng (d) tiếp xúc với (O) tại A => D là tiếp tuyến của A

=> AM _|_ AB (tính chất tiếp tuyến) => tam giác AMB vuông A

lại có góc ANB=90o (góc nội tiếp chắn nửa đường tròn) => tam giác ANB vuông tại N

xét tam giác vuông AMB và ANB có \(\widehat{B}\)chung

=> tam giác AMB đồng dạng với tam giác ANB => \(\frac{AB}{BM}=\frac{BN}{AB}\Rightarrow AB^2=BN\cdot BM\)

mà AB=2R không đổi => AB2=4R2 không đổi => BM.BN=4R2 không đổi

b) ta có \(\widehat{AQP}=\frac{1}{2}\left(sđAB-sđAP\right)=\frac{1}{2}sđPB\)(định lý góc côc định ngoài đường tròn)

lại có \(PNB=\frac{1}{2}sđPB\)(tính chất góc nội tiếp) => \(AQP=PNB\left(=\frac{1}{2}sđPB\right)\)

hay \(\widehat{MQP}=\widehat{PNB}\)mà \(\widehat{MNP}+\widehat{PNB}=180^o\)(kề bù) => ^MQP=^MNP=1800

=> tứ giác MNPQ nội tiếp 

c) áp dụng bđt Cosi cho 2 số dương ta có:

\(BM+BN\ge2\sqrt{BM\cdot BN}=2\sqrt{4R^2}=4R\)

dấu "=" xảy ra khi BM=BN <=> M trùng với N trái với giả thiết => BM+BN >4R(1)

chứng minh tương tự ta có BP+BQ >4R (2)

từ (1) và (2) => BM+BN+BP+BQ >8R (đpcm)