K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2021

\(PT\left(1\right)\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)+2xy=x+y\\ \Leftrightarrow\left[\left(x+y\right)^2-2xy\right]\left(x+y\right)+2xy-\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)^3-2xy\left(x+y\right)+2xy-\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-1\right]-2xy\left(x+y-1\right)=0\\ \Leftrightarrow\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)-2xy\left(x+y-1\right)=0\\ \Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)\left(x+y+1\right)-2xy\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x^2+2xy+x+y^2+y+1=0\left(3\right)\end{matrix}\right.\\ \left(3\right)\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)+\dfrac{1}{4}+\dfrac{3}{4}=0\\ \Leftrightarrow\left(x+y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô.n_o\right)\)

Từ đó em thế vô PT(2) thôi

9 tháng 11 2021

em tưởng \(PT\left(1\right)\Leftrightarrow\left(x^2+y^2\right)+2xy=x+y\) chứ 

1/Ghpt\(\left\{{}\begin{matrix}x^2+y^2+x^2y^2=1+2xy\\\left(x-y\right)\left(1+xy\right)=1-xy\end{matrix}\right.\)2/Ghpt\(\left\{{}\begin{matrix}x^2y+y+xy^2+x=18xy\\x^4y^2+y^2+x^2y^4+x^2=208x^2y^2\end{matrix}\right.\)3/Ghpt\(\left\{{}\begin{matrix}\sqrt{x+3}+\sqrt{y+3}=4\\\dfrac{1}{x}+\dfrac{1}{y}=2\end{matrix}\right.\)4/ Cho x,y là nghiệm của hệ phương trình\(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=2m\end{matrix}\right.\)Tìm min và max của A=xy5/cho x,y,z thỏa mãn...
Đọc tiếp

1/Ghpt\(\left\{{}\begin{matrix}x^2+y^2+x^2y^2=1+2xy\\\left(x-y\right)\left(1+xy\right)=1-xy\end{matrix}\right.\)

2/Ghpt\(\left\{{}\begin{matrix}x^2y+y+xy^2+x=18xy\\x^4y^2+y^2+x^2y^4+x^2=208x^2y^2\end{matrix}\right.\)

3/Ghpt\(\left\{{}\begin{matrix}\sqrt{x+3}+\sqrt{y+3}=4\\\dfrac{1}{x}+\dfrac{1}{y}=2\end{matrix}\right.\)

4/ Cho x,y là nghiệm của hệ phương trình

\(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=2m\end{matrix}\right.\)

Tìm min và max của A=xy

5/cho x,y,z thỏa mãn đk

\(\left\{{}\begin{matrix}xy+yz+xz=1\\x^2+y^2+z^2=2\end{matrix}\right.\)

Chứng minh rằng: \(\dfrac{-4}{3}\le x,y,z\le\dfrac{4}{3}\)

6/Ghpt bằng 3 cách\(\left\{{}\begin{matrix}x+y+z=1\\\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)

7/Ghpt\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)

8/Ghpt\(\left\{{}\begin{matrix}x^2-3y=-2\\y^2-3x=-2\end{matrix}\right.\)

9/Ghpt bằng 2 cách\(\left\{{}\begin{matrix}x+\sqrt{y+3}=3\\y+\sqrt{x+3}=3\end{matrix}\right.\)

10/Ghpt\(\left\{{}\begin{matrix}x+\dfrac{2}{y}=\dfrac{3}{x}\\y+\dfrac{2}{x}=\dfrac{3}{y}\end{matrix}\right.\)

11/Ghpt\(\left\{{}\begin{matrix}\sqrt[3]{3x+5}=y+1\\\sqrt[3]{3y+5}=x+1\end{matrix}\right.\)

12/Ghpt\(\left\{{}\begin{matrix}3x^2y-y^2-2=0\\3y^2x-x^2-2=0\end{matrix}\right.\)

13/Giải các phương trình sau bằng cách đứa về hệ pt đối xứng loại II:

a)\(\left(x^2-3\right)^2-x-3=0\)

b)\(x^2-2=\sqrt{x+2}\)

14/Ghpt:\(\left\{{}\begin{matrix}x^2+y^2+xy=3\\x^2-y^2+xy=1\end{matrix}\right.\)

2
16 tháng 6 2023

loading...  

16 tháng 6 2023

loading...  

NV
21 tháng 12 2022

ĐKXĐ: \(x;y\ge0\)

Với \(x=0\) hoặc \(y=0\) đều ko là nghiệm

Với \(x;y>0\) hệ tương đương:

\(\left\{{}\begin{matrix}1+\dfrac{1}{x+y}=\dfrac{2}{\sqrt{3x}}\\1-\dfrac{1}{x+y}=\dfrac{4\sqrt{2}}{\sqrt{7y}}\end{matrix}\right.\)

Lần lượt cộng vế với vế và trừ vế cho vế ta được:

\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{3x}}+\dfrac{2\sqrt{2}}{\sqrt{7y}}\\\dfrac{1}{x+y}=\dfrac{1}{\sqrt{3x}}-\dfrac{2\sqrt{2}}{\sqrt{7y}}\end{matrix}\right.\)

Nhân vế với vế:

\(\dfrac{1}{x+y}=\dfrac{1}{3x}-\dfrac{8}{7y}\)

\(\Leftrightarrow\dfrac{y}{3}-\dfrac{8x}{7}=1\)

\(\Rightarrow y=\dfrac{24x+21}{7}\)

Rồi thế vào 1 trong các pt đầu 

Nhưng em có nhầm đề ko mà con số xấu kinh khủng vậy nhỉ? Số \(\sqrt{7}\) kia cho xấu 1 cách ko cần thiết, nó ko ảnh hưởng đến cách giải mà chỉ khiến cho việc tính toán khó khăn 1 cách cơ học khá vớ vẩn

21 tháng 12 2022

Đề thầy em cho thế

NV
21 tháng 12 2022

\(x^2+y^2+2xy-16-2xy+\dfrac{8xy}{x+y}=0\)

\(\Leftrightarrow\left(x+y\right)^2-16-2xy\left(1-\dfrac{4}{x+y}\right)=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(x+y+4\right)-2xy\left(\dfrac{x+y-4}{x+y}\right)=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(x+y+4-\dfrac{2xy}{x+y}\right)=0\)

\(\Rightarrow\left(x+y-4\right)\left(x^2+y^2+4x+4y\right)=0\)

\(\Rightarrow x+y=4\) (do \(x+y>0\) theo ĐKXĐ nên \(x^2+y^2+4\left(x+y\right)>0\))

Rồi thế vào pt dưới

16 tháng 5 2017

part full :v

*Th 1: \(x+y=2\)

\(Pt\left(1\right)\Leftrightarrow3y\sqrt{2-y^2}=x+\dfrac{4}{x+1}\)

xét \(VT=3y\sqrt{2-y^2}=3\sqrt{y^2\left(2-y^2\right)}\le3.\dfrac{y^2+2-y^2}{2}=3\)(theo AM-GM)

\(VT=x+\dfrac{4}{x+1}=\left(x+1\right)+\dfrac{4}{x+1}-1\ge2\sqrt{\dfrac{4\left(x+1\right)}{x+1}}-1=4-1=3\)(theo AM-GM)

do đó \(VT\le3;VF\ge3\)

\(VT=VF\Leftrightarrow\left\{{}\begin{matrix}y^2=2-y^2\\x+1=\dfrac{4}{x+1}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\pm1\\\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\end{matrix}\right.\)(tmđkxđ)(4 cặp)

*TH 2 \(\left(x+1\right)\sqrt{2-y^2}=1\Leftrightarrow x+1=\dfrac{1}{\sqrt{2-y^2}}\)(\(-\sqrt{2}< y< \sqrt{2}\))

thế vào Pt(1) , bình phương giải (nhác làm quá)

16 tháng 5 2017

\(Pt\left(2\right)\Leftrightarrow\left(x+y-2\right)\left[\left(x+1\right)\sqrt{2-y^2}-1\right]=0\)

9 tháng 11 2021

\(ĐK:x+y\ge0;x-y\ge0;x,y\ge0\)

\(PT\left(1\right)\Leftrightarrow\sqrt{x+y}-1+\sqrt{x-y}-\sqrt{x^2-y^2}=0\\ \Leftrightarrow\dfrac{x+y-1}{\sqrt{x+y}+1}+\dfrac{x-y-x^2+y^2}{\sqrt{x-y}+\sqrt{x^2-y^2}}=0\\ \Leftrightarrow\dfrac{x+y-1}{\sqrt{x+y}+1}+\dfrac{\left(y-x\right)\left(x+y-1\right)}{\sqrt{x-y}+\sqrt{x^2-y^2}}=0\\ \Leftrightarrow\left(x+y-1\right)\left(\dfrac{1}{\sqrt{x+y}+1}+\dfrac{y-x}{\sqrt{x-y}+\sqrt{x^2+y^2}}\right)=0\)

\(\Leftrightarrow x+y-1=0\left(\dfrac{1}{\sqrt{x+y}-1}+\dfrac{y-x}{\sqrt{x-y}+\sqrt{x^2+y^2}}>0\right)\)

\(\Leftrightarrow y=x-1\)

Thế vào \(PT\left(2\right)\Leftrightarrow\sqrt{x}+\sqrt{x-1}=1\left(x\ge1\right)\Leftrightarrow\sqrt{x}-1+\sqrt{x-1}=0\)

\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{x-1}{\sqrt{x-1}}=0\\ \Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x-1}}\right)=0\\ \Leftrightarrow x=1\Leftrightarrow y=0\)

Vậy ...

11 tháng 11 2021

anh ơi chắc j \(\dfrac{1}{\sqrt{x+y}-1}+\dfrac{y-x}{\sqrt{x-y}+\sqrt{x^2+y^2}}>0\)

1 tháng 1 2018

1. Đề này là 18 chứ không phải 15 nhé

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) và (1) - (2) ta được hệ mới

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}=10\\x+y=8\end{matrix}\right.\)

\(\Rightarrow x=8-y\)

\(\Rightarrow\sqrt{x^2+9}+\sqrt{y^2+9}=10\)\(\Leftrightarrow\sqrt{x^2+9}=10-\sqrt{y^2+9}\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2+9=100-20\sqrt{y^2+9}+y^2+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\\left(8-y\right)^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\9y^2-72y+144=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)

1 tháng 1 2018

2. Dễ thấy x = y = 0 không phải là nghiệm của phương trình

HPT\(\Leftrightarrow\left\{{}\begin{matrix}1-\dfrac{12}{y+3x}=\dfrac{2}{\sqrt{x}}\left(1\right)\\1+\dfrac{12}{y+3x}=\dfrac{6}{\sqrt{y}}\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) ; (1) - (2) ta được

\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}\left(3\right)\\\dfrac{12}{y+3x}=\dfrac{3}{\sqrt{y}}-\dfrac{1}{\sqrt{x}}\left(4\right)\end{matrix}\right.\)

Lấy ( 3) nhân (4)

\(\dfrac{12}{y+3x}=\dfrac{9}{y}-\dfrac{1}{x}=\dfrac{9x-y}{xy}\)

\(\Leftrightarrow27x^2-6xy-y^2=0\Leftrightarrow\left(9x+y\right)\left(3x-y\right)=0\)

\(\Rightarrow y=3x\)

đến đây thì dễ rồi

9 tháng 11 2021

\(PT\left(2\right)\Leftrightarrow\dfrac{x^2+y^2-x^2+y^2}{\sqrt{x^2+y^2}+\sqrt{x^2-y^2}}-y=0\\ \Leftrightarrow\dfrac{2y^2}{\sqrt{x^2+y^2}+\sqrt{x^2-y^2}}-y=0\\ \Leftrightarrow y\left(\dfrac{2y}{\sqrt{x^2+y^2}+\sqrt{x^2-y^2}}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}y=0\\\dfrac{2y}{\sqrt{x^2+y^2}+\sqrt{x^2-y^2}}=1\left(3\right)\end{matrix}\right.\\ \left(3\right)\Leftrightarrow\sqrt{x^2+y^2}+\sqrt{x^2-y^2}=2y\\ \Leftrightarrow x^2+\sqrt{x^4-y^4}=2y^2\\ \Leftrightarrow\sqrt{x^4-y^4}=\left(2y^2-x^2\right)^2\\ \Leftrightarrow x^4-y^4=4y^4-4x^2y^2+x^4\\ \Leftrightarrow5y^4-4x^2y^2=0\\ \Leftrightarrow y^2\left(5y^2-4x^2\right)=0\Leftrightarrow\left[{}\begin{matrix}y=0\left(trùng.n_o\right)\\5y^2=4x^2\end{matrix}\right.\)

\(\Leftrightarrow x^2=\dfrac{5}{4}y^2\)

Từ đó thế 2 trường hợp vào PT(1)

9 tháng 11 2021

y=0(trùng no) là sao?