Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: BC=BH+HC
nên BC=9+16
hay BC=25cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=9\cdot25\\AC^2=16\cdot25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15cm\\AC=20cm\end{matrix}\right.\)
Gọi số sản phẩm àm 2 ng công nhân được giao là x (x∈N*, sản phẩm)
Thời gian hoàn thành công việc của người thứ nhất là: \(\dfrac{x}{40}\left(h\right)\)
Thời gian hoàn thành công việc của ngươi thứ hai là: \(\dfrac{x}{50}\left(h\right)\)
Vì ng thứ nhất hoàn thành công việc chậm hơn người thứ hai 2 giờ nên ta có PT:
\(\dfrac{x}{40}-\dfrac{x}{50}=2\)
⇔\(50x-40x=4000\)
⇔\(10x=4000\)
⇔\(x=400\)
Vậy số sản phẩm mỗi công nhân được giao là 400 (sản phẩm)
a) \(x^2+2x+1=\left(x+1\right)^2\)
\(x^2-2x+1=\left(x-1\right)^2\)
\(x^2+4x+4=\left(x+2\right)^2\)
\(x^2-4x+4=\left(x-2\right)^2\)
\(x^2+6x+9=\left(x+3\right)^2\)
\(x^2-6x+9=\left(x-3\right)^2\)
\(x^2-10x+25=\left(x-5\right)^2\)
\(x^2+10x+25=\left(x+5\right)^2\)
b) \(16x^2-8x+1=\left(4x-1\right)^2\)
c) \(4x^2+12xy+9y^2=\left(2x+3y\right)^2\)
d) \(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)
e) \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
f) \(9x^2+30x+25=\left(3x+5\right)^2\)
Bài 3:
a: Ta có: \(3x^2+10x+2=10\)
\(\Leftrightarrow3x^2+10x-8=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
a)\(4x^2+x=x\left(4x+1\right)\)
b)\(3x-9y=3\left(x-3y\right)\)
c)\(5\left(x-y\right)-x\left(x-y\right)=\left(5-x\right)\left(x-y\right)\)
d)\(4\left(2x-y\right)-x\left(y-2x\right)=-4\left(y-2x\right)-x\left(y-2x\right)=\left(-4-x\right)\left(y-2x\right)\)
e)\(\left(2x+1\right)^2+2\left(2x+1\right)=\left(2x+1\right)\left(2x+1+2\right)=\left(2x+1\right)\left(2x+3\right)\)
f)\(y\left(x+y\right)-y-x=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)
g)\(2y\left(x-y\right)^2+x\left(y-x\right)^2=2y\left(y-x\right)^2+x\left(y-x\right)^2=\left(2y+x\right)\left(y-x\right)^2\)
h)
a: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=x+4\)
=>\(x^2=2x+8\)
=>\(x^2-2x-8=0\)
=>(x-4)(x+2)=0
=>\(\left[{}\begin{matrix}x-4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Thay x=4 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot4^2=\dfrac{1}{2}\cdot16=8\)
Thay x=-2 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)
Vậy: A(4;8); B(-2;2)
b: Ta có: A(4;8)
=>Tọa độ hình chiếu của A trên trục Ox là:
\(\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
=>H(4;0)
B(-2;2)
Tọa độ hình chiếu của B trên Ox là:
\(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
=>K(-2;0)
Tọa độ C là:
\(\left\{{}\begin{matrix}x=0\\y=0+4=4\end{matrix}\right.\)
Vậy: C(0;4)
H(4;0); K(-2;0)
\(CO=\sqrt{\left(0-0\right)^2+\left(4-0\right)^2}=4\)
\(HK=\sqrt{\left(-2-4\right)^2+\left(0-0\right)^2}=\sqrt{6^2+0}=6\)
Diện tích ΔCHK là:
\(S_{CHK}=\dfrac{1}{2}\cdot CO\cdot HK=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\)
bạn cần bài mấy
2. a. x3 - 9x2 + 27x - 27 tại x = 5
= x3 - 3.x2.3 + 3.x.32 - 33
= (x - 3)3
Thay x = 5 vào phép tính:
= (5 - 3)3
= 23
= 8