K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

làm từ nãy tới giờ bó tay rùi!

22 tháng 3 2016

Phân tích đa thức x2+ x-6 = (x-2)(x+3)

Gọi thương của phép chia f(x) cho đa thức trên là Q(x)

Ta có f(2)= 8+ 2a+b=0

Suy ra 2a+b=-8

lại có f(-3)= -27+ 3a+b=0

Suy ra 3a+b=27

đến đây ta dùng máy tính giải hệ ta được a=35;b=-78

2 tháng 10 2021

\(a,4x^3+ax+b⋮x-2\\ \Leftrightarrow4x^3+ax+b=\left(x-2\right)\cdot a\left(x\right)\)

Thay \(x=2\Leftrightarrow32+2a+b=0\Leftrightarrow2a+b=-32\left(1\right)\)

\(4x^3+ax+b⋮x+1\\ \Leftrightarrow4x^3+ax+b=\left(x+1\right)\cdot b\left(x\right)\)

Thay \(x=-1\Leftrightarrow-4-a+b=0\Leftrightarrow a-b=-4\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\) ta có hệ \(\left\{{}\begin{matrix}2a+b=-32\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-36\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-12\\b=-8\end{matrix}\right.\)

 

a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)

hay a=7

AH
Akai Haruma
Giáo viên
7 tháng 9 2018

Lời giải:

Để $f(x)$ chia hết cho $x^2-1=(x-1)(x+1)$ thì nó phải chia hết cho $x-1$ và $x+1$

Khi đó số dư của $f(x)$ khi chia cho $x-1; x+1$ phải bằng $0$

Áp dụng định lý Bê-du về phép chia đa thức, số dư của $f(x)$ khi chia cho $x-1,x+1$ lần lượt là:

\(f(1)=1+a+b=0\)

\(f(-1)=1-a+b=0\)

Cộng theo vế: \(2+2b=0\Rightarrow b=-1\)

Thay lại vào một trong 2 phương trình thì suy ra \(a=0\)

22 tháng 12 2020

Hệ số bất định đi :)

Đặt h(x) là thương trong phép chia f(x) cho g(x)

f(x) bậc 4 g(x) bậc 2 => h(x) bậc 2

=> h(x) có dạng x2 + cx + d

Khi đó f(x) ⋮ g(x) <=> f(x) = g(x).h(x)

<=> x4 + ax2 + b = ( x2 - x - 1 )( x2 + cx + d )

<=> x4 + ax2 + b = x4 + cx3 + dx2 - x3 - cx2 - dx - x2 - cx - d

<=> x4 + ax2 + b = x4 + ( c - 1 )x3 + ( d - c - 1 )x2 + ( -d - c )x - d

Đồng nhất hệ số ta có :

\(\hept{\begin{cases}c-1=0\\d-c-1=a\\-d-c=0\end{cases}};b=-d\)=> \(\hept{\begin{cases}c=1\\d=-1\\a=-3\end{cases}};b=1\)

Vậy a = -3 ; b = 1

22 tháng 12 2020

Quỳnh ơi, chét dở rồi, tao ghi sai đề mới chết chứ, phải là x^2-x+1 chứ không phải x^2-x-1 '-'

14 tháng 11 2022

a: f(x) chiahết cho g(x)

=>\(x^4-x^2-3x^3+3x+\left(b+1\right)x^2-\left(b+1\right)+\left(a-3\right)x+2b+1⋮x^2-1\)

=>a-3=0 và 2b+1=0

=>a=3 và b=-1/2

b: A=2x^2-3x

=2(x^2-3/2x)

=2(x^2-2*x*3/4+9/16-9/16)

=2(x-3/4)^2-9/8>=-9/8

Dấu = xảy ra khi x=3/4

16 tháng 8 2018

Ta có : \(f\left(x\right)=x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì :

\(\left[{}\begin{matrix}x^2+2x+2⋮x^2+ax+b\\x^2-2x+2⋮x^2+ax+b\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\\\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\end{matrix}\right.\)

16 tháng 8 2018

Giỏi! Hồi trưa suy nghĩ muốn thấy tía luôn mà có giải ra đâu =.="